ترغب بنشر مسار تعليمي؟ اضغط هنا

Zooming SlowMo: An Efficient One-Stage Framework for Space-Time Video Super-Resolution

84   0   0.0 ( 0 )
 نشر من قبل Xiaoyu Xiang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we address the space-time video super-resolution, which aims at generating a high-resolution (HR) slow-motion video from a low-resolution (LR) and low frame rate (LFR) video sequence. A naive method is to decompose it into two sub-tasks: video frame interpolation (VFI) and video super-resolution (VSR). Nevertheless, temporal interpolation and spatial upscaling are intra-related in this problem. Two-stage approaches cannot fully make use of this natural property. Besides, state-of-the-art VFI or VSR deep networks usually have a large frame reconstruction module in order to obtain high-quality photo-realistic video frames, which makes the two-stage approaches have large models and thus be relatively time-consuming. To overcome the issues, we present a one-stage space-time video super-resolution framework, which can directly reconstruct an HR slow-motion video sequence from an input LR and LFR video. Instead of reconstructing missing LR intermediate frames as VFI models do, we temporally interpolate LR frame features of the missing LR frames capturing local temporal contexts by a feature temporal interpolation module. Extensive experiments on widely used benchmarks demonstrate that the proposed framework not only achieves better qualitative and quantitative performance on both clean and noisy LR frames but also is several times faster than recent state-of-the-art two-stage networks. The source code is released in https://github.com/Mukosame/Zooming-Slow-Mo-CVPR-2020 .

قيم البحث

اقرأ أيضاً

In this paper, we explore the space-time video super-resolution task, which aims to generate a high-resolution (HR) slow-motion video from a low frame rate (LFR), low-resolution (LR) video. A simple solution is to split it into two sub-tasks: video f rame interpolation (VFI) and video super-resolution (VSR). However, temporal interpolation and spatial super-resolution are intra-related in this task. Two-stage methods cannot fully take advantage of the natural property. In addition, state-of-the-art VFI or VSR networks require a large frame-synthesis or reconstruction module for predicting high-quality video frames, which makes the two-stage methods have large model sizes and thus be time-consuming. To overcome the problems, we propose a one-stage space-time video super-resolution framework, which directly synthesizes an HR slow-motion video from an LFR, LR video. Rather than synthesizing missing LR video frames as VFI networks do, we firstly temporally interpolate LR frame features in missing LR video frames capturing local temporal contexts by the proposed feature temporal interpolation network. Then, we propose a deformable ConvLSTM to align and aggregate temporal information simultaneously for better leveraging global temporal contexts. Finally, a deep reconstruction network is adopted to predict HR slow-motion video frames. Extensive experiments on benchmark datasets demonstrate that the proposed method not only achieves better quantitative and qualitative performance but also is more than three times faster than recent two-stage state-of-the-art methods, e.g., DAIN+EDVR and DAIN+RBPN.
Recent years have seen considerable research activities devoted to video enhancement that simultaneously increases temporal frame rate and spatial resolution. However, the existing methods either fail to explore the intrinsic relationship between tem poral and spatial information or lack flexibility in the choice of final temporal/spatial resolution. In this work, we propose an unconstrained space-time video super-resolution network, which can effectively exploit space-time correlation to boost performance. Moreover, it has complete freedom in adjusting the temporal frame rate and spatial resolution through the use of the optical flow technique and a generalized pixelshuffle operation. Our extensive experiments demonstrate that the proposed method not only outperforms the state-of-the-art, but also requires far fewer parameters and less running time.
121 - Gang Xu , Jun Xu , Zhen Li 2021
Space-time video super-resolution (STVSR) aims to increase the spatial and temporal resolutions of low-resolution and low-frame-rate videos. Recently, deformable convolution based methods have achieved promising STVSR performance, but they could only infer the intermediate frame pre-defined in the training stage. Besides, these methods undervalued the short-term motion cues among adjacent frames. In this paper, we propose a Temporal Modulation Network (TMNet) to interpolate arbitrary intermediate frame(s) with accurate high-resolution reconstruction. Specifically, we propose a Temporal Modulation Block (TMB) to modulate deformable convolution kernels for controllable feature interpolation. To well exploit the temporal information, we propose a Locally-temporal Feature Comparison (LFC) module, along with the Bi-directional Deformable ConvLSTM, to extract short-term and long-term motion cues in videos. Experiments on three benchmark datasets demonstrate that our TMNet outperforms previous STVSR methods. The code is available at https://github.com/CS-GangXu/TMNet.
This paper is on video recognition using Transformers. Very recent attempts in this area have demonstrated promising results in terms of recognition accuracy, yet they have been also shown to induce, in many cases, significant computational overheads due to the additional modelling of the temporal information. In this work, we propose a Video Transformer model the complexity of which scales linearly with the number of frames in the video sequence and hence induces no overhead compared to an image-based Transformer model. To achieve this, our model makes two approximations to the full space-time attention used in Video Transformers: (a) It restricts time attention to a local temporal window and capitalizes on the Transformers depth to obtain full temporal coverage of the video sequence. (b) It uses efficient space-time mixing to attend jointly spatial and temporal locations without inducing any additional cost on top of a spatial-only attention model. We also show how to integrate 2 very lightweight mechanisms for global temporal-only attention which provide additional accuracy improvements at minimal computational cost. We demonstrate that our model produces very high recognition accuracy on the most popular video recognition datasets while at the same time being significantly more efficient than other Video Transformer models. Code will be made available.
Video super-resolution (VSR) aims at restoring a video in low-resolution (LR) and improving it to higher-resolution (HR). Due to the characteristics of video tasks, it is very important that motion information among frames should be well concerned, s ummarized and utilized for guidance in a VSR algorithm. Especially, when a video contains large motion, conventional methods easily bring incoherent results or artifacts. In this paper, we propose a novel deep neural network with Dual Subnet and Multi-stage Communicated Upsampling (DSMC) for super-resolution of videos with large motion. We design a new module named U-shaped residual dense network with 3D convolution (U3D-RDN) for fine implicit motion estimation and motion compensation (MEMC) as well as coarse spatial feature extraction. And we present a new Multi-Stage Communicated Upsampling (MSCU) module to make full use of the intermediate results of upsampling for guiding the VSR. Moreover, a novel dual subnet is devised to aid the training of our DSMC, whose dual loss helps to reduce the solution space as well as enhance the generalization ability. Our experimental results confirm that our method achieves superior performance on videos with large motion compared to state-of-the-art methods.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا