ترغب بنشر مسار تعليمي؟ اضغط هنا

Enhanced emission from a single quantum dot in a microdisk at a deterministic diabolical point

87   0   0.0 ( 0 )
 نشر من قبل Xiulai Xu Prof
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on controllable cavity modes through controlling the backscattering by two identical scatterers. Periodic changes of the backscattering coupling between two degenerate cavity modes are observed with the angle between two scatterers and elucidated by a theoretical model using two-mode approximation and numerical simulations. The periodically appearing single-peak cavity modes indicate mode degeneracy at diabolical points. Then interactions between single quantum dots and cavity modes are investigated. Enhanced emission of a quantum dot with a six-fold intensity increase is obtained in a microdisk at a diabolical point. This method to control cavity modes allows large-scale integration, high reproducibility and fexible design of the size, location, quantity and shape for scatterers, which can be applied for integrated photonic structures with scatterer-modified light-matter interaction.



قيم البحث

اقرأ أيضاً

We report on the observation of single-photon superradiance from an exciton in a semiconductor quantum dot. The confinement by the quantum dot is strong enough for it to mimic a two-level atom, yet sufficiently weak to ensure superradiance. The elect rostatic interaction between the electron and the hole comprising the exciton gives rise to an anharmonic spectrum, which we exploit to prepare the superradiant quantum state deterministically with a laser pulse. We observe a five-fold enhancement of the oscillator strength compared to conventional quantum dots. The enhancement is limited by the base temperature of our cryostat and may lead to oscillator strengths above 1000 from a single quantum emitter at optical frequencies.
We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit measurements. We observe non-Markovian dynamics when the quantum dot is tuned into resonance with the cavity leading to a non-exponential decay in time. Excellent agreement between experiment and theory is observed with no free parameters providing the first quantitative description of an all-solid-state cavity QED system based on quantum dot emitters.
We present a proposal for deterministic quantum teleportation of electrons in a semiconductor nanostructure consisting of a single and a double quantum dot. The central issue addressed in this paper is how to design and implement the most efficient - in terms of the required number of single and two-qubit operations - deterministic teleportation protocol for this system. Using a group-theoretical analysis we show that deterministic teleportation requires a minimum of three single-qubit rotations and two entangling (sqrt(swap)) operations. These can be implemented for spin qubits in quantum dots using electron spin resonance (for single-spin rotations) and exchange interaction (for sqrt(swap) operations).
159 - Dirk Heinze , Artur Zrenner , 2014
Sources of single photons are key elements in the study of basic quantum optical concepts and applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their straight forward integrabili ty in semiconductor based on-chip solutions and the potential that photon emission can be triggered on demand. Usually, the photon emission event is part of a cascaded biexciton-exciton emission scheme. Important properties of the emitted photon such as polarization and time of emission are either probabilistic in nature or pre-determined by electronic properties of the system. In this work, we study the direct two-photon emission from the biexciton. We show that emission through this higher-order transition provides a much more versatile approach to generate a single photon. In the scheme we propose, the two-photon emission from the biexciton is enabled by a laser field (or laser pulse) driving the system into a virtual state inside the band gap. From this intermediate virtual state, the single photon of interest is then spontaneously emitted. Its properties are determined by the driving laser pulse, enabling all-optical on-the-fly control of polarization state, frequency, and time of emission of the photon.
The amplitude and phase of a materials nonlinear optical response provide insight into the underlying electronic dynamics that determine its optical properties. Phase-sensitive nonlinear spectroscopy techniques are widely implemented to explore these dynamics through demodulation of the complex optical signal field into its quadrature components; however, complete reconstruction of the optical response requires measuring both the amplitude and phase of each quadrature, which is often lost in standard detection methods. Here, we implement a heterodyne-detection scheme to fully reconstruct the amplitude and phase response of spectral hole-burning from InAs/GaAs charged quantum dots. We observe an ultra-narrow absorption profile and a corresponding dispersive lineshape of the phase, which reflect the nanosecond optical coherence time of the charged exciton transition. Simultaneously, the measurements are sensitive to electron spin relaxation dynamics on a millisecond timescale, as this manifests as a magnetic-field dependent delay of the amplitude and phase modulation. Appreciable amplitude modulation depth and nonlinear phase shift up to 0.09$timespi$ radians (16$deg$) are demonstrated, providing new possibilities for quadrature modulation at faint photon levels with several independent control parameters, including photon number, modulation frequency, detuning, and externally applied fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا