ﻻ يوجد ملخص باللغة العربية
The amplitude and phase of a materials nonlinear optical response provide insight into the underlying electronic dynamics that determine its optical properties. Phase-sensitive nonlinear spectroscopy techniques are widely implemented to explore these dynamics through demodulation of the complex optical signal field into its quadrature components; however, complete reconstruction of the optical response requires measuring both the amplitude and phase of each quadrature, which is often lost in standard detection methods. Here, we implement a heterodyne-detection scheme to fully reconstruct the amplitude and phase response of spectral hole-burning from InAs/GaAs charged quantum dots. We observe an ultra-narrow absorption profile and a corresponding dispersive lineshape of the phase, which reflect the nanosecond optical coherence time of the charged exciton transition. Simultaneously, the measurements are sensitive to electron spin relaxation dynamics on a millisecond timescale, as this manifests as a magnetic-field dependent delay of the amplitude and phase modulation. Appreciable amplitude modulation depth and nonlinear phase shift up to 0.09$timespi$ radians (16$deg$) are demonstrated, providing new possibilities for quadrature modulation at faint photon levels with several independent control parameters, including photon number, modulation frequency, detuning, and externally applied fields.
We exploit the nonlinearity arising from the spin-photon interaction in an InAs quantum dot to demonstrate phase shifts of scattered light pulses at the single-photon level. Photon phase shifts of close to 90 degrees are achieved using a charged quan
Strong nonlinear interactions between photons enable logic operations for both classical and quantum-information technology. Unfortunately, nonlinear interactions are usually feeble and therefore all-optical logic gates tend to be inefficient. A quan
Sources of single photons are key elements in the study of basic quantum optical concepts and applications in quantum information science. Among the different sources available, semiconductor quantum dots excel with their straight forward integrabili
We measure the detuning-dependent dynamics of a quasi-resonantly excited single quantum dot coupled to a micropillar cavity. The system is modeled with the dissipative Jaynes-Cummings model where all experimental parameters are determined by explicit
Planar nanostructures allow near-ideal extraction of emission from a quantum emitter embedded within, thereby realizing deterministic single-photon sources. Such a source can be transformed into M single-photon sources by implementing active temporal