ترغب بنشر مسار تعليمي؟ اضغط هنا

Partition-Mallows Model and Its Inference for Rank Aggregation

64   0   0.0 ( 0 )
 نشر من قبل Wanchuang Zhu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Learning how to aggregate ranking lists has been an active research area for many years and its advances have played a vital role in many applications ranging from bioinformatics to internet commerce. The problem of discerning reliability of rankers based only on the rank data is of great interest to many practitioners, but has received less attention from researchers. By dividing the ranked entities into two disjoint groups, i.e., relevant and irrelevant/background ones, and incorporating the Mallows model for the relative ranking of relevant entities, we propose a framework for rank aggregation that can not only distinguish quality differences among the rankers but also provide the detailed ranking information for relevant entities. Theoretical properties of the proposed approach are established, and its advantages over existing approaches are demonstrated via simulation studies and real-data applications. Extensions of the proposed method to handle partial ranking lists and conduct covariate-assisted rank aggregation are also discussed.



قيم البحث

اقرأ أيضاً

Model averaging is an alternative to model selection for dealing with model uncertainty, which is widely used and very valuable. However, most of the existing model averaging methods are proposed based on the least squares loss function, which could be very sensitive to the presence of outliers in the data. In this paper, we propose an outlier-robust model averaging approach by Mallows-type criterion. The key idea is to develop weight choice criteria by minimising an estimator of the expected prediction error for the function being convex with an unique minimum, and twice differentiable in expectation, rather than the expected squared error. The robust loss functions, such as least absolute deviation and Hubers function, reduce the effects of large residuals and poor samples. Simulation study and real data analysis are conducted to demonstrate the finite-sample performance of our estimators and compare them with other model selection and averaging methods.
Models specified by low-rank matrices are ubiquitous in contemporary applications. In many of these problem domains, the row/column space structure of a low-rank matrix carries information about some underlying phenomenon, and it is of interest in in ferential settings to evaluate the extent to which the row/column spaces of an estimated low-rank matrix signify discoveries about the phenomenon. However, in contrast to variable selection, we lack a formal framework to assess true/false discoveries in low-rank estimation; in particular, the key source of difficulty is that the standard notion of a discovery is a discrete one that is ill-suited to the smooth structure underlying low-rank matrices. We address this challenge via a geometric reformulation of the concept of a discovery, which then enables a natural definition in the low-rank case. We describe and analyze a generalization of the Stability Selection method of Meinshausen and Buhlmann to control for false discoveries in low-rank estimation, and we demonstrate its utility compared to previous approaches via numerical experiments.
The goal of causal inference is to understand the outcome of alternative courses of action. However, all causal inference requires assumptions. Such assumptions can be more influential than in typical tasks for probabilistic modeling, and testing tho se assumptions is important to assess the validity of causal inference. We develop model criticism for Bayesian causal inference, building on the idea of posterior predictive checks to assess model fit. Our approach involves decomposing the problem, separately criticizing the model of treatment assignments and the model of outcomes. Conditioned on the assumption of unconfoundedness---that the treatments are assigned independently of the potential outcomes---we show how to check any additional modeling assumption. Our approach provides a foundation for diagnosing model-based causal inferences.
Understanding treatment effect heterogeneity in observational studies is of great practical importance to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modeling such heterogeneity. In this paper, we propose a new method for inference on heterogeneous quantile treatment effects that incorporates high-dimensional covariates. Our estimator combines a debiased $ell_1$-penalized regression adjustment with a quantile-specific covariate balancing scheme. We present a comprehensive study of the theoretical properties of this estimator, including weak convergence of the heterogeneous quantile treatment effect process to the sum of two independent, centered Gaussian processes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and an empirical example, dealing with the differential effect of mothers education on infant birth weights.
Identifying causal relationships is a challenging yet crucial problem in many fields of science like epidemiology, climatology, ecology, genomics, economics and neuroscience, to mention only a few. Recent studies have demonstrated that ordinal partit ion transition networks (OPTNs) allow inferring the coupling direction between two dynamical systems. In this work, we generalize this concept to the study of the interactions among multiple dynamical systems and we propose a new method to detect causality in multivariate observational data. By applying this method to numerical simulations of coupled linear stochastic processes as well as two examples of interacting nonlinear dynamical systems (coupled Lorenz systems and a network of neural mass models), we demonstrate that our approach can reliably identify the direction of interactions and the associated coupling delays. Finally, we study real-world observational microelectrode array electrophysiology data from rodent brain slices to identify the causal coupling structures underlying epileptiform activity. Our results, both from simulations and real-world data, suggest that OPTNs can provide a complementary and robust approach to infer causal effect networks from multivariate observational data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا