ترغب بنشر مسار تعليمي؟ اضغط هنا

Model Criticism for Bayesian Causal Inference

468   0   0.0 ( 0 )
 نشر من قبل Dustin Tran
 تاريخ النشر 2016
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of causal inference is to understand the outcome of alternative courses of action. However, all causal inference requires assumptions. Such assumptions can be more influential than in typical tasks for probabilistic modeling, and testing those assumptions is important to assess the validity of causal inference. We develop model criticism for Bayesian causal inference, building on the idea of posterior predictive checks to assess model fit. Our approach involves decomposing the problem, separately criticizing the model of treatment assignments and the model of outcomes. Conditioned on the assumption of unconfoundedness---that the treatments are assigned independently of the potential outcomes---we show how to check any additional modeling assumption. Our approach provides a foundation for diagnosing model-based causal inferences.



قيم البحث

اقرأ أيضاً

Frequentist inference has a well-established supporting theory for doubly robust causal inference based on the potential outcomes framework, which is realized via outcome regression (OR) and propensity score (PS) models. The Bayesian counterpart, how ever, is not obvious as the PS model loses its balancing property in joint modeling. In this paper, we propose a natural and formal Bayesian solution by bridging loss-type Bayesian inference with a utility function derived from the notion of a pseudo-population via the change of measure. Consistency of the posterior distribution is shown with correctly specified and misspecified OR models. Simulation studies suggest that our proposed method can estimate the true causal effect more efficiently and achieve the frequentist coverage if either the OR model is correctly specified or fit with a flexible function of the confounders, compared to the previous Bayesian approach via the Bayesian bootstrap. Finally, we apply this novel Bayesian method to assess the impact of speed cameras on the reduction of car collisions in England.
63 - Masahiro Tanaka 2019
This study proposes a new Bayesian approach to infer binary treatment effects. The approach treats counterfactual untreated outcomes as missing observations and infers them by completing a matrix composed of realized and potential untreated outcomes using a data augmentation technique. We also develop a tailored prior that helps in the identification of parameters and induces the matrix of untreated outcomes to be approximately low rank. Posterior draws are simulated using a Markov Chain Monte Carlo sampler. While the proposed approach is similar to synthetic control methods and other related methods, it has several notable advantages. First, unlike synthetic control methods, the proposed approach does not require stringent assumptions. Second, in contrast to non-Bayesian approaches, the proposed method can quantify uncertainty about inferences in a straightforward and consistent manner. By means of a series of simulation studies, we show that our proposal has a better finite sample performance than that of the existing approaches.
288 - Kangjie Zhou , Jinzhu Jia 2021
Propensity score methods have been shown to be powerful in obtaining efficient estimators of average treatment effect (ATE) from observational data, especially under the existence of confounding factors. When estimating, deciding which type of covari ates need to be included in the propensity score function is important, since incorporating some unnecessary covariates may amplify both bias and variance of estimators of ATE. In this paper, we show that including additional instrumental variables that satisfy the exclusion restriction for outcome will do harm to the statistical efficiency. Also, we prove that, controlling for covariates that appear as outcome predictors, i.e. predict the outcomes and are irrelevant to the exposures, can help reduce the asymptotic variance of ATE estimation. We also note that, efficiently estimating the ATE by non-parametric or semi-parametric methods require the estimated propensity score function, as described in Hirano et al. (2003)cite{Hirano2003}. Such estimation procedure usually asks for many regularity conditions, Rothe (2016)cite{Rothe2016} also illustrated this point and proposed a known propensity score (KPS) estimator that requires mild regularity conditions and is still fully efficient. In addition, we introduce a linearly modified (LM) estimator that is nearly efficient in most general settings and need not estimation of the propensity score function, hence convenient to calculate. The construction of this estimator borrows idea from the interaction estimator of Lin (2013)cite{Lin2013}, in which regression adjustment with interaction terms are applied to deal with data arising from a completely randomized experiment. As its name suggests, the LM estimator can be viewed as a linear modification on the IPW estimator using known propensity scores. We will also investigate its statistical properties both analytically and numerically.
In a comprehensive cohort study of two competing treatments (say, A and B), clinically eligible individuals are first asked to enroll in a randomized trial and, if they refuse, are then asked to enroll in a parallel observational study in which they can choose treatment according to their own preference. We consider estimation of two estimands: (1) comprehensive cohort causal effect -- the difference in mean potential outcomes had all patients in the comprehensive cohort received treatment A vs. treatment B and (2) randomized trial causal effect -- the difference in mean potential outcomes had all patients enrolled in the randomized trial received treatment A vs. treatment B. For each estimand, we consider inference under various sets of unconfoundedness assumptions and construct semiparametric efficient and robust estimators. These estimators depend on nuisance functions, which we estimate, for illustrative purposes, using generalized additive models. Using the theory of sample splitting, we establish the asymptotic properties of our proposed estimators. We also illustrate our methodology using data from the Bypass Angioplasty Revascularization Investigation (BARI) randomized trial and observational registry to evaluate the effect of percutaneous transluminal coronary balloon angioplasty versus coronary artery bypass grafting on 5-year mortality. To evaluate the finite sample performance of our estimators, we use the BARI dataset as the basis of a realistic simulation study.
82 - Eric Dunipace 2021
Weighting methods are a common tool to de-bias estimates of causal effects. And though there are an increasing number of seemingly disparate methods, many of them can be folded into one unifying regime: causal optimal transport. This new method direc tly targets distributional balance by minimizing optimal transport distances between treatment and control groups or, more generally, between a source and target population. Our approach is model-free but can also incorporate moments or any other important functions of covariates that the researcher desires to balance. We find that the causal optimal transport outperforms competitor methods when both the propensity score and outcome models are misspecified, indicating it is a robust alternative to common weighting methods. Finally, we demonstrate the utility of our method in an external control study examining the effect of misoprostol versus oxytocin for treatment of post-partum hemorrhage.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا