ترغب بنشر مسار تعليمي؟ اضغط هنا

False Discovery and Its Control in Low Rank Estimation

58   0   0.0 ( 0 )
 نشر من قبل Armeen Taeb
 تاريخ النشر 2018
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Models specified by low-rank matrices are ubiquitous in contemporary applications. In many of these problem domains, the row/column space structure of a low-rank matrix carries information about some underlying phenomenon, and it is of interest in inferential settings to evaluate the extent to which the row/column spaces of an estimated low-rank matrix signify discoveries about the phenomenon. However, in contrast to variable selection, we lack a formal framework to assess true/false discoveries in low-rank estimation; in particular, the key source of difficulty is that the standard notion of a discovery is a discrete one that is ill-suited to the smooth structure underlying low-rank matrices. We address this challenge via a geometric reformulation of the concept of a discovery, which then enables a natural definition in the low-rank case. We describe and analyze a generalization of the Stability Selection method of Meinshausen and Buhlmann to control for false discoveries in low-rank estimation, and we demonstrate its utility compared to previous approaches via numerical experiments.



قيم البحث

اقرأ أيضاً

Selecting relevant features associated with a given response variable is an important issue in many scientific fields. Quantifying quality and uncertainty of a selection result via false discovery rate (FDR) control has been of recent interest. This paper introduces a way of using data-splitting strategies to asymptotically control the FDR while maintaining a high power. For each feature, the method constructs a test statistic by estimating two independent regression coefficients via data splitting. FDR control is achieved by taking advantage of the statistics property that, for any null feature, its sampling distribution is symmetric about zero. Furthermore, we propose Multiple Data Splitting (MDS) to stabilize the selection result and boost the power. Interestingly and surprisingly, with the FDR still under control, MDS not only helps overcome the power loss caused by sample splitting, but also results in a lower variance of the false discovery proportion (FDP) compared with all other methods in consideration. We prove that the proposed data-splitting methods can asymptotically control the FDR at any designated level for linear and Gaussian graphical models in both low and high dimensions. Through intensive simulation studies and a real-data application, we show that the proposed methods are robust to the unknown distribution of features, easy to implement and computationally efficient, and are often the most powerful ones amongst competitors especially when the signals are weak and the correlations or partial correlations are high among features.
349 - Lu Zhang , Junwei Lu 2021
Variable selection on the large-scale networks has been extensively studied in the literature. While most of the existing methods are limited to the local functionals especially the graph edges, this paper focuses on selecting the discrete hub struct ures of the networks. Specifically, we propose an inferential method, called StarTrek filter, to select the hub nodes with degrees larger than a certain thresholding level in the high dimensional graphical models and control the false discovery rate (FDR). Discovering hub nodes in the networks is challenging: there is no straightforward statistic for testing the degree of a node due to the combinatorial structures; complicated dependence in the multiple testing problem is hard to characterize and control. In methodology, the StarTrek filter overcomes this by constructing p-values based on the maximum test statistics via the Gaussian multiplier bootstrap. In theory, we show that the StarTrek filter can control the FDR by providing accurate bounds on the approximation errors of the quantile estimation and addressing the dependence structures among the maximal statistics. To this end, we establish novel Cramer-type comparison bounds for the high dimensional Gaussian random vectors. Comparing to the Gaussian comparison bound via the Kolmogorov distance established by citet{chernozhukov2014anti}, our Cramer-type comparison bounds establish the relative difference between the distribution functions of two high dimensional Gaussian random vectors. We illustrate the validity of the StarTrek filter in a series of numerical experiments and apply it to the genotype-tissue expression dataset to discover central regulator genes.
The highly influential two-group model in testing a large number of statistical hypotheses assumes that the test statistics are drawn independently from a mixture of a high probability null distribution and a low probability alternative. Optimal cont rol of the marginal false discovery rate (mFDR), in the sense that it provides maximal power (expected true discoveries) subject to mFDR control, is known to be achieved by thresholding the local false discovery rate (locFDR), i.e., the probability of the hypothesis being null given the set of test statistics, with a fixed threshold. We address the challenge of controlling optimally the popular false discovery rate (FDR) or positive FDR (pFDR) rather than mFDR in the general two-group model, which also allows for dependence between the test statistics. These criteria are less conservative than the mFDR criterion, so they make more rejections in expectation. We derive their optimal multiple testing (OMT) policies, which turn out to be thresholding the locFDR with a threshold that is a function of the entire set of statistics. We develop an efficient algorithm for finding these policies, and use it for problems with thousands of hypotheses. We illustrate these procedures on gene expression studies.
115 - Bowen Gang , Wenguang Sun , 2020
Consider the online testing of a stream of hypotheses where a real--time decision must be made before the next data point arrives. The error rate is required to be controlled at {all} decision points. Conventional emph{simultaneous testing rules} are no longer applicable due to the more stringent error constraints and absence of future data. Moreover, the online decision--making process may come to a halt when the total error budget, or alpha--wealth, is exhausted. This work develops a new class of structure--adaptive sequential testing (SAST) rules for online false discover rate (FDR) control. A key element in our proposal is a new alpha--investment algorithm that precisely characterizes the gains and losses in sequential decision making. SAST captures time varying structures of the data stream, learns the optimal threshold adaptively in an ongoing manner and optimizes the alpha-wealth allocation across different time periods. We present theory and numerical results to show that the proposed method is valid for online FDR control and achieves substantial power gain over existing online testing rules.
Scientific hypotheses in a variety of applications have domain-specific structures, such as the tree structure of the International Classification of Diseases (ICD), the directed acyclic graph structure of the Gene Ontology (GO), or the spatial struc ture in genome-wide association studies. In the context of multiple testing, the resulting relationships among hypotheses can create redundancies among rejections that hinder interpretability. This leads to the practice of filtering rejection sets obtained from multiple testing procedures, which may in turn invalidate their inferential guarantees. We propose Focused BH, a simple, flexible, and principled methodology to adjust for the application of any pre-specified filter. We prove that Focused BH controls the false discovery rate under various conditions, including when the filter satisfies an intuitive monotonicity property and the p-values are positively dependent. We demonstrate in simulations that Focused BH performs well across a variety of settings, and illustrate this methods practical utility via analyses of real datasets based on ICD and GO.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا