ﻻ يوجد ملخص باللغة العربية
Several classes of tempered measures are characterised that are eigenmeasures of the Fourier transform, the latter viewed as a linear operator on (generally unbounded) Radon measures on $RR^d$. In particular, we classify all periodic eigenmeasures on $RR$, which gives an interesting connection with the discrete Fourier transform, as well as all eigenmeasures on $RR$ with uniformly discrete support. An interesting subclass of the latter emerges from the classic cut and project method for aperiodic Meyer sets.
Kinetic inductance in thin film superconductors has been used as the basis for low-temperature, low-noise photon detectors. In particular thin films such as NbTiN, TiN, NbN, the kinetic inductance effect is strongly non-linear in the applied current,
In this work, we present two parallel algorithms for the large-scale discrete Fourier transform (DFT) on Tensor Processing Unit (TPU) clusters. The two parallel algorithms are associated with two formulations of DFT: one is based on the Kronecker pro
In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this pu
The state-of-the-art automotive radars employ multidimensional discrete Fourier transforms (DFT) in order to estimate various target parameters. The DFT is implemented using the fast Fourier transform (FFT), at sample and computational complexity of
The discrete Fourier transform (DFT) is an important operator which acts on the Hilbert space of complex valued functions on the ring Z/NZ. In the case where N=p is an odd prime number, we exhibit a canonical basis of eigenvectors for the DFT. The tr