ترغب بنشر مسار تعليمي؟ اضغط هنا

On eigenmeasures under Fourier transform

56   0   0.0 ( 0 )
 نشر من قبل Michael Baake
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Michael Baake




اسأل ChatGPT حول البحث

Several classes of tempered measures are characterised that are eigenmeasures of the Fourier transform, the latter viewed as a linear operator on (generally unbounded) Radon measures on $RR^d$. In particular, we classify all periodic eigenmeasures on $RR$, which gives an interesting connection with the discrete Fourier transform, as well as all eigenmeasures on $RR$ with uniformly discrete support. An interesting subclass of the latter emerges from the classic cut and project method for aperiodic Meyer sets.



قيم البحث

اقرأ أيضاً

Kinetic inductance in thin film superconductors has been used as the basis for low-temperature, low-noise photon detectors. In particular thin films such as NbTiN, TiN, NbN, the kinetic inductance effect is strongly non-linear in the applied current, which can be utilized to realize novel devices. We present results from transmission lines made with these materials, where DC (current) control is used to modulate the phase velocity thereby enabling an on-chip spectrometer. The utility of such compact spectrometers are discussed, along with their natural connection with parametric amplifiers.
In this work, we present two parallel algorithms for the large-scale discrete Fourier transform (DFT) on Tensor Processing Unit (TPU) clusters. The two parallel algorithms are associated with two formulations of DFT: one is based on the Kronecker pro duct, to be specific, dense matrix multiplications between the input data and the Vandermonde matrix, denoted as KDFT in this work; the other is based on the famous Cooley-Tukey algorithm and phase adjustment, denoted as FFT in this work. Both KDFT and FFT formulations take full advantage of TPUs strength in matrix multiplications. The KDFT formulation allows direct use of nonuniform inputs without additional step. In the two parallel algorithms, the same strategy of data decomposition is applied to the input data. Through the data decomposition, the dense matrix multiplications in KDFT and FFT are kept local within TPU cores, which can be performed completely in parallel. The communication among TPU cores is achieved through the one-shuffle scheme in both parallel algorithms, with which sending and receiving data takes place simultaneously between two neighboring cores and along the same direction on the interconnect network. The one-shuffle scheme is designed for the interconnect topology of TPU clusters, minimizing the time required by the communication among TPU cores. Both KDFT and FFT are implemented in TensorFlow. The three-dimensional complex DFT is performed on an example of dimension $8192 times 8192 times 8192$ with a full TPU Pod: the run time of KDFT is 12.66 seconds and that of FFT is 8.3 seconds. Scaling analysis is provided to demonstrate the high parallel efficiency of the two DFT implementations on TPUs.
In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this pu rpose, we propose a shift operator based on the directed Laplacian of a graph. Based on our shift operator, we then define total variation of graph signals, which is used in frequency ordering. We achieve natural frequency ordering and interpretation via the proposed definition of GFT. Moreover, we show that our proposed shift operator makes the LSI filters under DSP$_mathrm{G}$ to become polynomial in the directed Laplacian.
The state-of-the-art automotive radars employ multidimensional discrete Fourier transforms (DFT) in order to estimate various target parameters. The DFT is implemented using the fast Fourier transform (FFT), at sample and computational complexity of $O(N)$ and $O(N log N)$, respectively, where $N$ is the number of samples in the signal space. We have recently proposed a sparse Fourier transform based on the Fourier projection-slice theorem (FPS-SFT), which applies to multidimensional signals that are sparse in the frequency domain. FPS-SFT achieves sample complexity of $O(K)$ and computational complexity of $O(K log K)$ for a multidimensional, $K$-sparse signal. While FPS-SFT considers the ideal scenario, i.e., exactly sparse data that contains on-grid frequencies, in this paper, by extending FPS-SFT into a robust version (RFPS-SFT), we emphasize on addressing noisy signals that contain off-grid frequencies; such signals arise from radar applications. This is achieved by employing a windowing technique and a voting-based frequency decoding procedure; the former reduces the frequency leakage of the off-grid frequencies below the noise level to preserve the sparsity of the signal, while the latter significantly lowers the frequency localization error stemming from the noise. The performance of the proposed method is demonstrated both theoretically and numerically.
162 - Shamgar Gurevich 2008
The discrete Fourier transform (DFT) is an important operator which acts on the Hilbert space of complex valued functions on the ring Z/NZ. In the case where N=p is an odd prime number, we exhibit a canonical basis of eigenvectors for the DFT. The tr ansition matrix from the standard basis to the canonical basis defines a novel transform which we call the discrete oscillator transform (DOT for short). Finally, we describe a fast algorithm for computing the discrete oscillator transform in certain cases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا