ﻻ يوجد ملخص باللغة العربية
In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this purpose, we propose a shift operator based on the directed Laplacian of a graph. Based on our shift operator, we then define total variation of graph signals, which is used in frequency ordering. We achieve natural frequency ordering and interpretation via the proposed definition of GFT. Moreover, we show that our proposed shift operator makes the LSI filters under DSP$_mathrm{G}$ to become polynomial in the directed Laplacian.
Objective: Longitudinal neuroimaging studies have demonstrated that adolescence is the crucial developmental epoch of continued brain growth and change. A large number of researchers dedicate to uncovering the mechanisms about brain maturity during a
The frequent exchange of multimedia information in the present era projects an increasing demand for copyright protection. In this work, we propose a novel audio zero-watermarking technology based on graph Fourier transform for enhancing the robustne
Fourier Transform Interferometry (FTI) is an appealing Hyperspectral (HS) imaging modality for many applications demanding high spectral resolution, e.g., in fluorescence microscopy. However, the effective resolution of FTI is limited by the durabili
The discrete Fourier transform (DFT) is an important operator which acts on the Hilbert space of complex valued functions on the ring Z/NZ. In the case where N=p is an odd prime number, we exhibit a canonical basis of eigenvectors for the DFT. The tr
In this paper, a discrete LCT (DLCT) irrelevant to the sampling periods and without oversampling operation is developed. This DLCT is based on the well-known CM-CC-CM decomposition, that is, implemented by two discrete chirp multiplications (CMs) and