ﻻ يوجد ملخص باللغة العربية
The discrete Fourier transform (DFT) is an important operator which acts on the Hilbert space of complex valued functions on the ring Z/NZ. In the case where N=p is an odd prime number, we exhibit a canonical basis of eigenvectors for the DFT. The transition matrix from the standard basis to the canonical basis defines a novel transform which we call the discrete oscillator transform (DOT for short). Finally, we describe a fast algorithm for computing the discrete oscillator transform in certain cases.
We consider the problem of secure distributed matrix computation (SDMC), where a textit{user} can query a function of data matrices generated at distributed textit{source} nodes. We assume the availability of $N$ honest but curious computation server
In this work, we present two parallel algorithms for the large-scale discrete Fourier transform (DFT) on Tensor Processing Unit (TPU) clusters. The two parallel algorithms are associated with two formulations of DFT: one is based on the Kronecker pro
In this paper, we redefine the Graph Fourier Transform (GFT) under the DSP$_mathrm{G}$ framework. We consider the Jordan eigenvectors of the directed Laplacian as graph harmonics and the corresponding eigenvalues as the graph frequencies. For this pu
In this work, we introduce a definition of the Discrete Fourier Transform (DFT) on Euclidean lattices in $R^n$, that generalizes the $n$-th fold DFT of the integer lattice $Z^n$ to arbitrary lattices. This definition is not applicable for every latti
Estimation of the Discrete-Time Fourier Transform (DTFT) at points of a finite domain arises in many imaging applications. A new approach to this task, the Golden Angle Linogram Fourier Domain (GALFD), is presented, together with a computationally fa