ﻻ يوجد ملخص باللغة العربية
Motivated by experimental observations of patterning at the leading edge of motile eukaryotic cells, we introduce a general model for the dynamics of nearly-flat fluid membranes driven from within by an ensemble of activators. We include, in particular, a kinematic coupling between activator density and membrane slope which generically arises whenever the membrane has a non-vanishing normal speed. We unveil the phase diagram of the model by means of a perturbative field-theoretical renormalization group analysis. Due to the aforementioned kinematic coupling the natural dynamical scaling is acoustic, that is the dynamical critical exponent is 1. However, as soon as the the normal velocity of the membrane is tuned to zero, the system crosses over to diffusive dynamic scaling in mean field. Distinct critical points can be reached depending on how the limit of vanishing velocity is realised: in each of them corrections to scaling due to nonlinear coupling terms must be taken into accounts. The detailed analysis of these critical points reveals novel scaling regimes wich can be accessed with perturbative methods, together with signs of strong coupling behaviour, which establishes a promising ground for further non-perturbative calculations. Our results unify several previous studies on the dynamics of active membrane, while also identifying nontrivial scaling regimes which cannot be captured by passive theories of fluctuating interfaces and are relevant for the physics of living membranes.
We put forward a general field theory for membranes with embedded activators and analyse their critical properties using renormalization group techniques. Depending on the membrane-activator coupling, we find a crossover between acoustic and diffusiv
We introduce a class of information measures based on group entropies, allowing us to describe the information-theoretical properties of complex systems. These entropic measures are nonadditive, and are mathematically deduced from a series of natural
We show that the recent renormalization-group analysis of Lifshitz critical behavior presented by Leite [Phys. Rev. B {bf 67}, 104415 (2003)] suffers from a number of severe deficiencies. In particular, we show that his approach does not give an ultr
We show a way to perform the canonical renormalization group (RG) prescription in tensor space: write down the tensor RG equation, linearize it around a fixed-point tensor, and diagonalize the resulting linearized RG equation to obtain scaling dimens
It is shown that the interface model introduced in Phys. Rev. Lett. 86, 2369 (2001) violates fundamental symmetry requirements for vanishing gravitational acceleration $g$, so that its results cannot be applied to critical properties of interfaces for $gto 0$.