ﻻ يوجد ملخص باللغة العربية
We put forward a general field theory for membranes with embedded activators and analyse their critical properties using renormalization group techniques. Depending on the membrane-activator coupling, we find a crossover between acoustic and diffusive scaling regimes, with mean-field dynamical critical exponents z = 1 and 2 respectively. We argue that the acoustic scaling, which is exact in all spatial dimensions, is a suitable candidate for the universal description of the spatiotemporal patterns observed at the leading edge of motile cells. Furthermore, one-loop corrections to the diffusive mean-field exponents reveal universal behaviour distinct from the Kardar-Parisi-Zhang scaling of passive interfaces and signs of strong-coupling behaviour.
Motivated by experimental observations of patterning at the leading edge of motile eukaryotic cells, we introduce a general model for the dynamics of nearly-flat fluid membranes driven from within by an ensemble of activators. We include, in particul
We revisit the universal behavior of crystalline membranes at and below the crumpling transition, which pertains to the mechanical properties of important soft and hard matter materials, such as the cytoskeleton of red blood cells or graphene. Specif
Collective motion is often modeled within the framework of active fluids, where the constituent active particles, when interactions with other particles are switched off, perform normal diffusion at long times. However, in biology, single-particle su
We utilize a generalized Irving-Kirkwood procedure to derive the hydrodynamic equations of an active matter suspension with internal structure and driven by internal torque. The internal structure and torque of the active Brownian particles give rise
We study the dependence of the surface tension of a fluid interface on the density profile of a third suspended phase. By means of an approximated model for the binary mixture and of a perturbative approach we derive close formulas for the free energ