ﻻ يوجد ملخص باللغة العربية
Deep learning has significantly improved the precision of instance segmentation with abundant labeled data. However, in many areas like medical and manufacturing, collecting sufficient data is extremely hard and labeling this data requires high professional skills. We follow this motivation and propose a new task set named zero-shot instance segmentation (ZSI). In the training phase of ZSI, the model is trained with seen data, while in the testing phase, it is used to segment all seen and unseen instances. We first formulate the ZSI task and propose a method to tackle the challenge, which consists of Zero-shot Detector, Semantic Mask Head, Background Aware RPN and Synchronized Background Strategy. We present a new benchmark for zero-shot instance segmentation based on the MS-COCO dataset. The extensive empirical results in this benchmark show that our method not only surpasses the state-of-the-art results in zero-shot object detection task but also achieves promising performance on ZSI. Our approach will serve as a solid baseline and facilitate future research in zero-shot instance segmentation.
Semantic segmentation models are limited in their ability to scale to large numbers of object classes. In this paper, we introduce the new task of zero-shot semantic segmentation: learning pixel-wise classifiers for never-seen object categories with
zero-shot learning is an essential part of computer vision. As a classical downstream task, zero-shot semantic segmentation has been studied because of its applicant value. One of the popular zero-shot semantic segmentation methods is based on the ge
In this paper, we introduce an anchor-box free and single shot instance segmentation method, which is conceptually simple, fully convolutional and can be used as a mask prediction module for instance segmentation, by easily embedding it into most off
Few-shot instance segmentation (FSIS) conjoins the few-shot learning paradigm with general instance segmentation, which provides a possible way of tackling instance segmentation in the lack of abundant labeled data for training. This paper presents a
General purpose semantic segmentation relies on a backbone CNN network to extract discriminative features that help classify each image pixel into a seen object class (ie., the object classes available during training) or a background class. Zero-sho