ترغب بنشر مسار تعليمي؟ اضغط هنا

PolarMask: Single Shot Instance Segmentation with Polar Representation

85   0   0.0 ( 0 )
 نشر من قبل Enze Xie
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we introduce an anchor-box free and single shot instance segmentation method, which is conceptually simple, fully convolutional and can be used as a mask prediction module for instance segmentation, by easily embedding it into most off-the-shelf detection methods. Our method, termed PolarMask, formulates the instance segmentation problem as instance center classification and dense distance regression in a polar coordinate. Moreover, we propose two effective approaches to deal with sampling high-quality center examples and optimization for dense distance regression, respectively, which can significantly improve the performance and simplify the training process. Without any bells and whistles, PolarMask achieves 32.9% in mask mAP with single-model and single-scale training/testing on challenging COCO dataset. For the first time, we demonstrate a much simpler and flexible instance segmentation framework achieving competitive accuracy. We hope that the proposed PolarMask framework can serve as a fundamental and strong baseline for single shot instance segmentation tasks. Code is available at: github.com/xieenze/PolarMask.



قيم البحث

اقرأ أيضاً

Deep learning has significantly improved the precision of instance segmentation with abundant labeled data. However, in many areas like medical and manufacturing, collecting sufficient data is extremely hard and labeling this data requires high profe ssional skills. We follow this motivation and propose a new task set named zero-shot instance segmentation (ZSI). In the training phase of ZSI, the model is trained with seen data, while in the testing phase, it is used to segment all seen and unseen instances. We first formulate the ZSI task and propose a method to tackle the challenge, which consists of Zero-shot Detector, Semantic Mask Head, Background Aware RPN and Synchronized Background Strategy. We present a new benchmark for zero-shot instance segmentation based on the MS-COCO dataset. The extensive empirical results in this benchmark show that our method not only surpasses the state-of-the-art results in zero-shot object detection task but also achieves promising performance on ZSI. Our approach will serve as a solid baseline and facilitate future research in zero-shot instance segmentation.
Boundary-based instance segmentation has drawn much attention since of its attractive efficiency. However, existing methods suffer from the difficulty in long-distance regression. In this paper, we propose a coarse-to-fine module to address the probl em. Approximate boundary points are generated at the coarse stage and then features of these points are sampled and fed to a refined regressor for fine prediction. It is end-to-end trainable since differential sampling operation is well supported in the module. Furthermore, we design a holistic boundary-aware branch and introduce instance-agnostic supervision to assist regression. Equipped with ResNet-101, our approach achieves 31.7% mask AP on COCO dataset with single-scale training and testing, outperforming the baseline 1.3% mask AP with less than 1% additional parameters and GFLOPs. Experiments also show that our proposed method achieves competitive performance compared to existing boundary-based methods with a lightweight design and a simple pipeline.
Few-shot instance segmentation (FSIS) conjoins the few-shot learning paradigm with general instance segmentation, which provides a possible way of tackling instance segmentation in the lack of abundant labeled data for training. This paper presents a Fully Guided Network (FGN) for few-shot instance segmentation. FGN perceives FSIS as a guided model where a so-called support set is encoded and utilized to guide the predictions of a base instance segmentation network (i.e., Mask R-CNN), critical to which is the guidance mechanism. In this view, FGN introduces different guidance mechanisms into the various key components in Mask R-CNN, including Attention-Guided RPN, Relation-Guided Detector, and Attention-Guided FCN, in order to make full use of the guidance effect from the support set and adapt better to the inter-class generalization. Experiments on public datasets demonstrate that our proposed FGN can outperform the state-of-the-art methods.
Panoptic segmentation, which is a novel task of unifying instance segmentation and semantic segmentation, has attracted a lot of attention lately. However, most of the previous methods are composed of multiple pathways with each pathway specialized t o a designated segmentation task. In this paper, we propose to resolve panoptic segmentation in single-shot by integrating the execution flows. With the integrated pathway, a unified feature map called Panoptic-Feature is generated, which includes the information of both things and stuffs. Panoptic-Feature becomes more sophisticated by auxiliary problems that guide to cluster pixels that belong to the same instance and differentiate between objects of different classes. A collection of convolutional filters, where each filter represents either a thing or stuff, is applied to Panoptic-Feature at once, materializing the single-shot panoptic segmentation. Taking the advantages of both top-down and bottom-up approaches, our method, named SPINet, enjoys high efficiency and accuracy on major panoptic segmentation benchmarks: COCO and Cityscapes.
Binary grid mask representation is broadly used in instance segmentation. A representative instantiation is Mask R-CNN which predicts masks on a $28times 28$ binary grid. Generally, a low-resolution grid is not sufficient to capture the details, whil e a high-resolution grid dramatically increases the training complexity. In this paper, we propose a new mask representation by applying the discrete cosine transform(DCT) to encode the high-resolution binary grid mask into a compact vector. Our method, termed DCT-Mask, could be easily integrated into most pixel-based instance segmentation methods. Without any bells and whistles, DCT-Mask yields significant gains on different frameworks, backbones, datasets, and training schedules. It does not require any pre-processing or pre-training, and almost no harm to the running speed. Especially, for higher-quality annotations and more complex backbones, our method has a greater improvement. Moreover, we analyze the performance of our method from the perspective of the quality of mask representation. The main reason why DCT-Mask works well is that it obtains a high-quality mask representation with low complexity. Code is available at https://github.com/aliyun/DCT-Mask.git.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا