ﻻ يوجد ملخص باللغة العربية
In this paper, we introduce an anchor-box free and single shot instance segmentation method, which is conceptually simple, fully convolutional and can be used as a mask prediction module for instance segmentation, by easily embedding it into most off-the-shelf detection methods. Our method, termed PolarMask, formulates the instance segmentation problem as instance center classification and dense distance regression in a polar coordinate. Moreover, we propose two effective approaches to deal with sampling high-quality center examples and optimization for dense distance regression, respectively, which can significantly improve the performance and simplify the training process. Without any bells and whistles, PolarMask achieves 32.9% in mask mAP with single-model and single-scale training/testing on challenging COCO dataset. For the first time, we demonstrate a much simpler and flexible instance segmentation framework achieving competitive accuracy. We hope that the proposed PolarMask framework can serve as a fundamental and strong baseline for single shot instance segmentation tasks. Code is available at: github.com/xieenze/PolarMask.
Deep learning has significantly improved the precision of instance segmentation with abundant labeled data. However, in many areas like medical and manufacturing, collecting sufficient data is extremely hard and labeling this data requires high profe
Boundary-based instance segmentation has drawn much attention since of its attractive efficiency. However, existing methods suffer from the difficulty in long-distance regression. In this paper, we propose a coarse-to-fine module to address the probl
Few-shot instance segmentation (FSIS) conjoins the few-shot learning paradigm with general instance segmentation, which provides a possible way of tackling instance segmentation in the lack of abundant labeled data for training. This paper presents a
Panoptic segmentation, which is a novel task of unifying instance segmentation and semantic segmentation, has attracted a lot of attention lately. However, most of the previous methods are composed of multiple pathways with each pathway specialized t
Binary grid mask representation is broadly used in instance segmentation. A representative instantiation is Mask R-CNN which predicts masks on a $28times 28$ binary grid. Generally, a low-resolution grid is not sufficient to capture the details, whil