ﻻ يوجد ملخص باللغة العربية
Accurate calibration of polarization dependent optical elements is often necessary in optical experiments. A versatile polarimeter device to measure the polarization state of light is a valuable tool in these experiments. Here we report a rotating waveplate-based polarimeter capable of complete Stokes vector analysis of collimated light. Calibration of the device allows accurate measurements over a range of wavelengths, with a bandwidth of >30 nm in this implementation. A photo-interrupter trigger system supplies the phase information necessary for full determination of the Stokes vector. An Arduino microcontroller performs rapid analysis and displays the results on a liquid crystal display. The polarimeter is compact and can be placed anywhere on an optical table on a single standard post. The components to construct the device are only a fraction of the cost of commercially available devices while the accuracy and precision of the measurements are of the same order of magnitude.
An easily constructed and operated polarimeter precisely determines the relative Stokes parameters that characterize the polarization of laser light. The polarimeter is calibrated in situ without removing or realigning its optical elements, and it is
We demonstrate remote detection of rotating machinery, using an atomic magnetometer at room temperature and in an unshielded environment. The system relies on the coupling of the AC magnetic signature of the target with the spin-polarized, precessing
We describe a compact and stable setup for detecting the optical second harmonics, in which the incident plane rotates with respect to the sample. The setup is composed of rotating Fresnel-rhomb optics and a femtosecond ytterbium-doped fiber-laser so
A portable NMR polarimeter system has been developed to measure the polarization of a polarized Hydrogen-Deuteride (HD) target for hadron photoproduction experiments at SPring-8. The polarized HD target is produced at the Research Center for Nuclear
In spite of extensive observations and numerous theoretical studies in the past decades several key questions related with Gamma-Ray Bursts (GRB) emission mechanisms are still to be answered. Precise detection of the GRB polarization carried out by d