ﻻ يوجد ملخص باللغة العربية
We describe a compact and stable setup for detecting the optical second harmonics, in which the incident plane rotates with respect to the sample. The setup is composed of rotating Fresnel-rhomb optics and a femtosecond ytterbium-doped fiber-laser source operating at the repetition frequency of 10 MHz. The setup including the laser source occupies an area of 1 m2 and is stable so that the intensity fluctuation of the laser harmonics can be less than 0.2 % for 4 h. We present the isotropic harmonic signal of a gold mirror of 0.5 pW and demonstrate the integrity and sensitivity of the setup. We also show the polarization-dependent six-fold pattern of the harmonics of a few-layer WSe2, from which we infer the degree of local-field effects. Finally, we describe the extendibility of the setup to investigate the samples in various conditions such as cryogenic, strained, ultrafast non-equilibrium, and high magnetic fields.
Accurate calibration of polarization dependent optical elements is often necessary in optical experiments. A versatile polarimeter device to measure the polarization state of light is a valuable tool in these experiments. Here we report a rotating wa
The motivation for a cosmic muon veto (CMV) detector is to explore the possibility of locating the proposed large Iron Calorimeter (ICAL) detector at the India based Neutrino Observatory (INO) at a shallow depth. An initial effort in that direction,
Time- and number-resolved photon detection is crucial for photonic quantum information processing. Existing photon-number-resolving (PNR) detectors usually have limited timing and dark-count performance or require complex fabrication and operation. H
The focal-plane detector system for the KArlsruhe TRItium Neutrino (KATRIN) experiment consists of a multi-pixel silicon p-i-n-diode array, custom readout electronics, two superconducting solenoid magnets, an ultra high-vacuum system, a high-vacuum s
A beam imaging detector was developed by coupling a multi-strip anode with delay line readout to an E$times$B microchannel plate (MCP) detector. This detector is capable of measuring the incident position of the beam particles in one-dimension. To as