ترغب بنشر مسار تعليمي؟ اضغط هنا

Defocused travelling-fringes in scanning triple-Laue x-ray interferometry

294   0   0.0 ( 0 )
 نشر من قبل Carlo Sasso P
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The measurement of the silicon lattice parameter by a separate-crystal triple-Laue x-ray interferometer is a key step for the kilogram realisation by counting atoms. Since the measurement accuracy is approaching nine significant digits, a reliable model of the interferometer operation is demanded to quantify or exclude systematic errors. This paper investigates both analytically and experimentally the effect of defocus (a difference between the splitter-to-mirror distance on the one hand and the analyser-to-mirror one on the other) on the phase of the interference fringes and the measurement of the lattice parameter.



قيم البحث

اقرأ أيضاً

The impact of photodetector nonlinearity on dual-comb spectrometers is described and compared to that of Michelson-based Fourier transform spectrometers (FTS). The optical sampling occurring in the dual-comb approach, being the key difference with FT S, causes optical aliasing of the nonlinear spectral artifacts. Measured linear and nonlinear interferograms are presented to validate the model. Absorption lines of H$^{13}$CN are provided to understand the impact of nonlinearity on spectroscopic measurements.
Thick diffractive optical elements offer a promising way to achieve focusing or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter than about 0.1 nm. Efficient focusing requires that these are fabricated with structures that vary in period and orientation so that rays obey Braggs law over the entire lens aperture and give rise to constructive interference at the focus. Here the analysis method of ray-tracing of thick diffractive optical elements is applied to such lenses to optimise their designs and to investigate their operating and manufacturing tolerances. Expressions are provided of the fourth-order series expansions of the wavefront aberrations and transmissions of both axi-symmetric lenses and pairs of crossed lenses that each focuses in only one dimension like a cylindrical lens. We find that aplanatic zone-plate designs, whereby aberrations are corrected over a large field of view, can be achieved by axi-symmetric lenses but not the crossed lenses. We investigate the performance of 1 nm-resolution lenses with focal lengths of about 1 mm and show their fields of view are mainly limited by the acceptance angle of Bragg diffraction, and that aberrations can limit the performance of lenses with longer focal lengths. We apply the ray-tracing formalism for a tolerancing analysis of imperfect lenses and examine some strategies for the correction of their aberrations.
We present a novel, highly versatile, and self-referenced arrival time monitor for measuring the femtosecond time delay between a hard X-ray pulse from a free-electron laser and an optical laser pulse, measured directly on the same sample used for pu mp-probe experiments. Two chirped and picosecond long optical supercontinuum pulses traverse the sample with a mutually fixed time delay of 970 fs, while a femtosecond X-ray pulse arrives at an instant in between both pulses. Behind the sample the supercontinuum pulses are temporally overlapped to yield near-perfect destructive interference in the absence of the X-ray pulse. Stimulation of the sample with an X-ray pulse delivers non-zero contributions at certain optical wavelengths, which serve as a measure of the relative arrival time of the X-ray pulse with an accuracy of better than 25 fs. We find an excellent agreement of our monitor with the existing timing diagnostics at the SACLA XFEL with a Pearson correlation value of 0.98. We demonstrate a high sensitivity to measure X-ray pulses with pulse energies as low as 30 $mu$J. Using a free-flowing liquid jet as interaction sample ensures the full replacement of the sample volume for each X-ray/optical event, thus enabling its utility even at MHz repetition rate XFEL sources.
The ever-increasing brightness of synchrotron radiation sources demands improved x-ray optics to utilise their capability for imaging and probing biological cells, nano-devices, and functional matter on the nanometre scale with chemical sensitivity. Hard x-rays are ideal for high-resolution imaging and spectroscopic applications due to their short wavelength, high penetrating power, and chemical sensitivity. The penetrating power that makes x-rays useful for imaging also makes focusing them technologically challenging. Recent developments in layer deposition techniques that have enabled the fabrication of a series of highly focusing x-ray lenses, known as wedged multi layer Laue lenses. Improvements to the lens design and fabrication technique demands an accurate, robust, in-situ and at-wavelength characterisation method. To this end, we have developed a modified form of the speckle-tracking wavefront metrology method, the ptychographic x-ray speckle tracking method, which is capable of operating with highly divergent wavefields. A useful by-product of this method, is that it also provides high-resolution and aberration-free projection images of extended specimens. We report on three separate experiments using this method, where we have resolved ray path angles to within 4 nano-radians with an imaging resolution of 45nm (full-period). This method does not require a high degree of coherence, making it suitable for lab based x-ray sources. Likewise it is robust to errors in the registered sample positions making it suitable for x-ray free-electron laser facilities, where beam pointing fluctuations can be problematic for wavefront metrology.
A new principle of subwavelength imaging based on frequency scanning is considered. It is shown that it is possible to reconstruct the spatial profile of an external field exciting an array (or coupled arrays) of subwavelength-sized resonant particle s with a frequency scan over the whole band of resonating array modes. During the scan it is enough to measure and store the values of the near field at one or at most two points. After the scan the distribution of the near field can be reconstructed with simple post-processing. The proposed near-field microscope has no moving parts.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا