ترغب بنشر مسار تعليمي؟ اضغط هنا

Understanding photodetector nonlinearity in dual-comb interferometry

76   0   0.0 ( 0 )
 نشر من قبل Philippe Guay
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The impact of photodetector nonlinearity on dual-comb spectrometers is described and compared to that of Michelson-based Fourier transform spectrometers (FTS). The optical sampling occurring in the dual-comb approach, being the key difference with FTS, causes optical aliasing of the nonlinear spectral artifacts. Measured linear and nonlinear interferograms are presented to validate the model. Absorption lines of H$^{13}$CN are provided to understand the impact of nonlinearity on spectroscopic measurements.

قيم البحث

اقرأ أيضاً

Photodetector nonlinearity, the main limiting factor in terms of optical power in the detection chain, is corrected to improve the signal-to-noise ratio of a short-time measurement in dual-comb spectroscopy. An iterative correction algorithm minimizi ng out-of-band spectral artifacts based on nonlinearity correction methods used in classical Fourier-transform spectrometers is presented. The exactitude of the nonlinearity correction is validated using a low power linear measurement. Spectroscopic lines of H$^{12}$CN are provided and the error caused by the saturation of the detector is corrected yielding residuals limited by the measurement noise.
642 - Philippe Guay 2019
The phase information provided by the beat note between frequency combs and two continuous-wave lasers is used to extrapolate the phase evolution of comb modes found in a spectral region obtained via nonlinear broadening. This thereafter enables usin g interferogram self-correction to fully retrieve the coherence of a dual-comb beat note between two independent fiber lasers. This approach allows to forego the $f - 2f$ self-referencing of both combs, which is a significant simplification. Broadband near-infrared methane spectroscopy has been conducted as a demonstration of the simplified systems preserved performance.
Dual-comb spectroscopy utilizes two sets of comb lines with slightly different comb-tooth-spacings, and optical spectral information is acquired by measuring the radio-frequency beat notes between the sets of comb lines. It holds the promise as a rea l-time, high-resolution analytical spectroscopy tool for a range of applications. However, the stringent requirement on the coherence between comb lines from two separate lasers and the sophisticated control system to achieve that have confined the technology to the top metrology laboratories. By replacing control electronics with an all-optical dual-comb lasing scheme, a simplified dual-comb spectroscopy scheme is demonstrated using just one dual-wavelength, passively mode-locked fiber laser. Dual-comb pulses with a repetition-frequency difference determined by the intracavity dispersion are shown to be sufficiently stable against common-mode cavity drifts and noises. As sufficiently low relative linewidth is maintained between two sets of comb lines, capability to resolve RF beat notes between comb teeth and picometer-wide optical spectral features is demonstrated using a simple data acquisition and processing system in an all-fiber setup. Possibility to use energy-efficient, free-running fiber lasers with a small comb-tooth-spacing could enable the realization of low-cost dual-comb spectroscopy systems affordable to more applications.
95 - Ya Liu , Xin Zhao , Guoqing Hu 2016
Dual-comb lasers from which asynchronous ultrashort pulses can be simultaneously generated have recently become an interesting research subject. They could be an intriguing alternative to the current dual-laser optical-frequency-comb source with high ly sophisticated electronic control systems. If generated through a common light path traveled by all pulses, the common-mode noises between the spectral lines of different pulse trains could be significantly reduced. Therefore, coherent dual-comb generation from a completely common-path, unidirectional lasing cavity would be an interesting territory to explore. In this paper, we demonstrate such a dual-comb lasing scheme based on a nanomaterial saturable absorber with additional pulse narrowing and broadening mechanisms concurrently introduced into a mode-locked fiber laser. The interactions between multiple soliton formation mechanisms result in unusual bifurcation into two-pulse states with quite different characteristics. Simultaneous oscillation of pulses with four-fold difference in pulsewidths and tens of Hz repetition rate difference is observed. The coherence between these spectral-overlapped, picosecond and femtosecond pulses is further verified by the corresponding asynchronous cross-sampling and dual-comb spectroscopy measurements.
We experimentally demonstrate phase retrieval of a single-soliton Kerr comb using electric field cross-correlation implemented via dual-comb interferometry. The phase profile of the Kerr comb is acquired through the heterodyne beat between the Kerr c omb and a reference electro-optical comb with a pre-characterized phase profile. The soliton Kerr comb has a nearly flat phase profile, and the pump line is observed to show a phase offset which depends on the pumping parameters. The experimental results are in agreement with numerical simulations. Our all-linear approach enables rapid measurements (3.2 $mu$s) with low input power (20 $mu$W).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا