ترغب بنشر مسار تعليمي؟ اضغط هنا

A ray-trace analysis of X-ray multilayer Laue lenses for nanometer focusing

118   0   0.0 ( 0 )
 نشر من قبل Henry Chapman
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thick diffractive optical elements offer a promising way to achieve focusing or imaging at a resolution approaching 1 nm for X-ray wavelengths shorter than about 0.1 nm. Efficient focusing requires that these are fabricated with structures that vary in period and orientation so that rays obey Braggs law over the entire lens aperture and give rise to constructive interference at the focus. Here the analysis method of ray-tracing of thick diffractive optical elements is applied to such lenses to optimise their designs and to investigate their operating and manufacturing tolerances. Expressions are provided of the fourth-order series expansions of the wavefront aberrations and transmissions of both axi-symmetric lenses and pairs of crossed lenses that each focuses in only one dimension like a cylindrical lens. We find that aplanatic zone-plate designs, whereby aberrations are corrected over a large field of view, can be achieved by axi-symmetric lenses but not the crossed lenses. We investigate the performance of 1 nm-resolution lenses with focal lengths of about 1 mm and show their fields of view are mainly limited by the acceptance angle of Bragg diffraction, and that aberrations can limit the performance of lenses with longer focal lengths. We apply the ray-tracing formalism for a tolerancing analysis of imperfect lenses and examine some strategies for the correction of their aberrations.

قيم البحث

اقرأ أيضاً

We report on the first results obtained from our development project of focusing gamma-rays ($>$60 keV) by using Laue lenses. The first lens prototype model has been assembled and tested. We describe the technique adopted and the lens focusing capabilities at about 100 keV.
We report on new results on the development activity of broad band Laue lenses for hard X-/gamma-ray astronomy (70/100-600 keV). After the development of a first prototype, whose performance was presented at the SPIE conference on Astronomical Telesc opes held last year in Marseille (Frontera et al. 2008), we have improved the lens assembling technology. We present the development status of the new lens prototype that is on the way to be assembled.
The measurement of the silicon lattice parameter by a separate-crystal triple-Laue x-ray interferometer is a key step for the kilogram realisation by counting atoms. Since the measurement accuracy is approaching nine significant digits, a reliable mo del of the interferometer operation is demanded to quantify or exclude systematic errors. This paper investigates both analytically and experimentally the effect of defocus (a difference between the splitter-to-mirror distance on the one hand and the analyser-to-mirror one on the other) on the phase of the interference fringes and the measurement of the lattice parameter.
We propose a novel data-driven approach for analyzing synchrotron Laue X-ray microdiffraction scans based on machine learning algorithms. The basic architecture and major components of the method are formulated mathematically. We demonstrate it throu gh typical examples including polycrystalline BaTiO$_3$, multiphase transforming alloys and finely twinned martensite. The computational pipeline is implemented for beamline 12.3.2 at the Advanced Light Source, Lawrence Berkeley National Lab. The conventional analytical pathway for X-ray diffraction scans is based on a slow pattern by pattern crystal indexing process. This work provides a new way for analyzing X-ray diffraction 2D patterns, independent of the indexing process, and motivates further studies of X-ray diffraction patterns from the machine learning prospective for the development of suitable feature extraction, clustering and labeling algorithms.
The ever-increasing brightness of synchrotron radiation sources demands improved x-ray optics to utilise their capability for imaging and probing biological cells, nano-devices, and functional matter on the nanometre scale with chemical sensitivity. Hard x-rays are ideal for high-resolution imaging and spectroscopic applications due to their short wavelength, high penetrating power, and chemical sensitivity. The penetrating power that makes x-rays useful for imaging also makes focusing them technologically challenging. Recent developments in layer deposition techniques that have enabled the fabrication of a series of highly focusing x-ray lenses, known as wedged multi layer Laue lenses. Improvements to the lens design and fabrication technique demands an accurate, robust, in-situ and at-wavelength characterisation method. To this end, we have developed a modified form of the speckle-tracking wavefront metrology method, the ptychographic x-ray speckle tracking method, which is capable of operating with highly divergent wavefields. A useful by-product of this method, is that it also provides high-resolution and aberration-free projection images of extended specimens. We report on three separate experiments using this method, where we have resolved ray path angles to within 4 nano-radians with an imaging resolution of 45nm (full-period). This method does not require a high degree of coherence, making it suitable for lab based x-ray sources. Likewise it is robust to errors in the registered sample positions making it suitable for x-ray free-electron laser facilities, where beam pointing fluctuations can be problematic for wavefront metrology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا