ﻻ يوجد ملخص باللغة العربية
The design of 6th Generation (6G) wireless networks points towards flexible connect-and-compute technologies capable to support innovative services and use cases. Targeting the 2030 horizon, 6G networks are poised to pave the way for sustainable human-centered smart societies and vertical industries, such that wireless networks will be transformed into a distributed smart connectivity infrastructure, where new terminal types are embedded in the daily environment. In this context, the RISE-6G project aims at investigating innovative solutions that capitalize on the latest advances in the emerging technology of Reconfigurable Intelligent Surfaces (RISs), which offers dynamic and goal-oriented radio wave propagation control, enabling the concept of the wireless environment as a service. The project will focus on: i) the realistic modeling of RIS-assisted signal propagation, ii) the investigation of the fundamental limits of RIS-empowered wireless communications and sensing, and iii) the design of efficient algorithms for orchestrating networking RISs, in order to implement intelligent, sustainable, and dynamically programmable wireless environments enabling diverse services that go well beyond the 5G capabilities. RISE-6G will offer two unprecedented proof-of-concepts for realizing controlled wireless environments in near-future use cases.
Reconfigurable intelligent surfaces (RISs) have attracted wide interest from industry and academia since they can shape the wireless environment into a desirable form with a low cost. In practice, RISs have three types of implementations: 1) reflecti
The advantages of millimeter-wave and large antenna arrays technologies for accurate wireless localization received extensive attentions recently. However, how to further improve the accuracy of wireless localization, even in the case of obstructed l
Recent advances in the fabrication and experimentation of Reconfigurable Intelligent Surfaces (RISs) have motivated the concept of the smart radio environment, according to which the propagation of information-bearing waveforms in the wireless medium
Reconfigurable Intelligent Surface (RIS) is a promising solution to reconfigure the wireless environment in a controllable way. To compensate for the double-fading attenuation in the RIS-aided link, a large number of passive reflecting elements (REs)
Backscatter Communication (BackCom), which is based on passive reflection and modulation of an incident radio-frequency (RF) wave, has emerged as a cutting-edge technological paradigm for self-sustainable Internet-of-things (IoT). Nevertheless, the c