ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable Intelligent Surfaces in 6G: Reflective, Transmissive, or Both?

85   0   0.0 ( 0 )
 نشر من قبل Shuhao Zeng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Reconfigurable intelligent surfaces (RISs) have attracted wide interest from industry and academia since they can shape the wireless environment into a desirable form with a low cost. In practice, RISs have three types of implementations: 1) reflective, where signals can be reflected to the users on the same side of the base station (BS), 2) transmissive, where signals can penetrate the RIS to serve the users on the opposite side of the BS, and 3) hybrid, where the RISs have a dual function of reflection and transmission. However, existing works focus on the reflective type RISs, and the other two types of RISs are not well investigated. In this letter, a downlink multi-user RIS-assisted communication network is considered, where the RIS can be one of these types. We derive the system sum-rate, and discuss which type can yield the best performance under a specific user distribution. Numerical results verify our analysis.

قيم البحث

اقرأ أيضاً

The design of 6th Generation (6G) wireless networks points towards flexible connect-and-compute technologies capable to support innovative services and use cases. Targeting the 2030 horizon, 6G networks are poised to pave the way for sustainable huma n-centered smart societies and vertical industries, such that wireless networks will be transformed into a distributed smart connectivity infrastructure, where new terminal types are embedded in the daily environment. In this context, the RISE-6G project aims at investigating innovative solutions that capitalize on the latest advances in the emerging technology of Reconfigurable Intelligent Surfaces (RISs), which offers dynamic and goal-oriented radio wave propagation control, enabling the concept of the wireless environment as a service. The project will focus on: i) the realistic modeling of RIS-assisted signal propagation, ii) the investigation of the fundamental limits of RIS-empowered wireless communications and sensing, and iii) the design of efficient algorithms for orchestrating networking RISs, in order to implement intelligent, sustainable, and dynamically programmable wireless environments enabling diverse services that go well beyond the 5G capabilities. RISE-6G will offer two unprecedented proof-of-concepts for realizing controlled wireless environments in near-future use cases.
Backscatter Communication (BackCom), which is based on passive reflection and modulation of an incident radio-frequency (RF) wave, has emerged as a cutting-edge technological paradigm for self-sustainable Internet-of-things (IoT). Nevertheless, the c ontemporary BackCom systems are limited to short-range and low data rate applications only, thus rendering them insufficient on their own to support pervasive connectivity among the massive number of IoT devices. Meanwhile, wireless networks are rapidly evolving towards the smart radio paradigm. In this regard, reconfigurable intelligent surfaces (RISs) have come to the forefront to transform the wireless propagation environment into a fully controllable and customizable space in a cost-effective and energy-efficient manner. Targeting the sixth-generation (6G) horizon, we anticipate the integration of RISs into BackCom systems as a new frontier for enabling 6G IoT networks. In this article, for the first time in the open literature, we provide a tutorial overview of RIS-assisted BackCom (RIS-BackCom) systems. Specifically, we introduce the four different variants of RIS-BackCom and identify the potential improvements that can be achieved by incorporating RISs into BackCom systems. In addition, owing to the unrivaled effectiveness of non-orthogonal multiple access (NOMA), we present a case study on an RIS-assisted NOMA-enhanced BackCom system. Finally, we outline the way forward for translating this disruptive concept into real-world applications.
Edge caching can effectively reduce backhaul burden at core network and increase quality-ofservice at wireless edge nodes. However, the beneficial role of edge caching cannot be fully realized when the offloading link is in deep fade. Fortunately, th e impairments induced by wireless propagation environments could be renovated by a reconfigurable intelligent surface (RIS). In this paper, a new RIS-aided edge caching system is proposed, where a network cost minimization problem is formulated to optimize content placement at cache units, active beamforming at base station and passive phase shifting at RIS. After decoupling the content placement subproblem with hybrid beamforming design, we propose an alternating optimization algorithm to tackle the active beamforming and passive phase shifting. For active beamforming, we transform the problem into a semidefinite programming (SDP) and prove that the optimal solution of SDP is always rank-1. For passive phase shifting, we introduce block coordinate descent method to alternately optimize the auxiliary variables and the RIS phase shifts. Further, a conjugate gradient algorithm based on manifold optimization is proposed to deal with the non-convex unit-modulus constraints. Numerical results show that our RIS-aided edge caching design can effectively decrease the network cost in terms of backhaul capacity and power consumption.
Reconfigurable intelligent surface (RIS)-assisted transmission and space shift keying (SSK) appear as promising candidates for future energy-efficient wireless systems. In this paper, two RIS-based SSK schemes are proposed to efficiently improve the error and throughput performance of conventional SSK systems, respectively. The first one, termed RIS-SSK with passive beamforming (RIS-SSK-PB), employs an RIS for beamforming and targets the maximization of the minimum squared Euclidean distance between any two decision points. The second one, termed RIS-SSK with Alamouti space-time block coding (RIS-SSK-ASTBC), employs an RIS for ASTBC and enables the RIS to transmit its own Alamouti-coded information while reflecting the incident SSK signals to the destination. A low-complexity beamformer and an efficient maximum-likelihood (ML) detector are designed for RIS-SSK-PB and RIS-SSK-ASTBC, respectively. Approximate expressions for the average bit error probabilities of the source and/or the RIS are derived in closed-form assuming ML detection. Extensive computer simulations are conducted to verify the performance analysis. Results show that RIS-SSK-PB significantly outperforms the existing RIS-free and RIS-based SSK schemes, and RIS-SSK-ASTBC enables highly reliable transmission with throughput improvement.
Recent advances in the fabrication and experimentation of Reconfigurable Intelligent Surfaces (RISs) have motivated the concept of the smart radio environment, according to which the propagation of information-bearing waveforms in the wireless medium is amenable to programmability. Although the vast majority of recent experimental research on RIS-empowered wireless communications gravitates around narrowband beamforming in quasi-free space, RISs are foreseen to revolutionize wideband wireless connectivity in dense urban as well as indoor scenarios, which are usually characterized as strongly reverberant environments exhibiting severe multipath conditions. In this article, capitalizing on recent physics-driven experimental explorations of RIS-empowered wave propagation control in complex scattering cavities, we identify the potential of the spatiotemporal control offered by RISs to boost wireless communications in rich scattering channels via two case studies. First, an RIS is deployed to shape the multipath channel impulse response, which is shown to enable higher achievable communication rates. Second, the RIS-tunable propagation environment is leveraged as an analog multiplexer to localize non-cooperative objects using wave fingerprints, even when they are outside the line of sight. Future research challenges and opportunities in the algorithmic design and experimentation of smart rich scattering wireless environments enabled by RISs for sixth Generation (6G) wireless communications are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا