ترغب بنشر مسار تعليمي؟ اضغط هنا

Reconfigurable Intelligent Surface-Assisted Backscatter Communication: A New Frontier for Enabling 6G IoT Networks

84   0   0.0 ( 0 )
 نشر من قبل Aamir Mahmood
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Backscatter Communication (BackCom), which is based on passive reflection and modulation of an incident radio-frequency (RF) wave, has emerged as a cutting-edge technological paradigm for self-sustainable Internet-of-things (IoT). Nevertheless, the contemporary BackCom systems are limited to short-range and low data rate applications only, thus rendering them insufficient on their own to support pervasive connectivity among the massive number of IoT devices. Meanwhile, wireless networks are rapidly evolving towards the smart radio paradigm. In this regard, reconfigurable intelligent surfaces (RISs) have come to the forefront to transform the wireless propagation environment into a fully controllable and customizable space in a cost-effective and energy-efficient manner. Targeting the sixth-generation (6G) horizon, we anticipate the integration of RISs into BackCom systems as a new frontier for enabling 6G IoT networks. In this article, for the first time in the open literature, we provide a tutorial overview of RIS-assisted BackCom (RIS-BackCom) systems. Specifically, we introduce the four different variants of RIS-BackCom and identify the potential improvements that can be achieved by incorporating RISs into BackCom systems. In addition, owing to the unrivaled effectiveness of non-orthogonal multiple access (NOMA), we present a case study on an RIS-assisted NOMA-enhanced BackCom system. Finally, we outline the way forward for translating this disruptive concept into real-world applications.

قيم البحث

اقرأ أيضاً

124 - Sixian Li , Bin Duo , Xiaojun Yuan 2019
Thanks to the line-of-sight (LoS) transmission and flexibility, unmanned aerial vehicles (UAVs) effectively improve the throughput of wireless networks. Nevertheless, the LoS links are prone to severe deterioration by complex propagation environments , especially in urban areas. Reconfigurable intelligent surfaces (RISs), as a promising technique, can significantly improve the propagation environment and enhance communication quality by intelligently reflecting the received signals. Motivated by this, the joint UAV trajectory and RISs passive beamforming design for a novel RIS-assisted UAV communication system is investigated to maximize the average achievable rate in this letter. To tackle the formulated non-convex problem, we divide it into two subproblems, namely, passive beamforming and trajectory optimization. We first derive a closed-form phase-shift solution for any given UAV trajectory to achieve the phase alignment of the received signals from different transmission paths. Then, with the optimal phase-shift solution, we obtain a suboptimal trajectory solution by using the successive convex approximation (SCA) method. Numerical results demonstrate that the proposed algorithm can considerably improve the average achievable rate of the system.
103 - Zhi Chen , Boyu Ning , Chong Han 2021
Terahertz (THz) communications have emerged as a promising candidate to support the heavy data traffic and exploding network capacity in the future 6G wireless networks. However, THz communications are facing many challenges for practical implementat ion, such as propagation loss, signal blockage, and hardware cost. In this article, an emerging paradigm of intelligent reflecting surface (IRS) assisted THz communications is analyzed, to address the above issues, by leveraging the joint active and passive beamforming to enhance the communication quality and reduce overheads. Aiming at practical implementation, an overview of the currently available approaches of realizing THz active/passive beam steering at transmitter and IRS is presented. Based on these approaches, a beam training strategy for establishing joint beamforming is then investigated in THz communications. Moreover, various emerging and appealing 6G scenarios that integrate IRS into THz communications are envisioned. Open challenges and future research directions for this new paradigm are finally highlighted.
The intrinsic integration of the nonorthogonal multiple access (NOMA) and reconfigurable intelligent surface (RIS) techniques is envisioned to be a promising approach to significantly improve both the spectrum efficiency and energy efficiency for fut ure wireless communication networks. In this paper, the physical layer security (PLS) for a RIS-aided NOMA 6G networks is investigated, in which a RIS is deployed to assist the two dead zone NOMA users and both internal and external eavesdropping are considered. For the scenario with only internal eavesdropping, we consider the worst case that the near-end user is untrusted and may try to intercept the information of far-end user. A joint beamforming and power allocation sub-optimal scheme is proposed to improve the system PLS. Then we extend our work to a scenario with both internal and external eavesdropping. Two sub-scenarios are considered in this scenario: one is the sub-scenario without channel state information (CSI) of eavesdroppers, and another is the sub-scenario where the eavesdroppers CSI are available. For the both sub-scenarios, a noise beamforming scheme is introduced to be against the external eavesdroppers. An optimal power allocation scheme is proposed to further improve the system physical security for the second sub-scenario. Simulation results show the superior performance of the proposed schemes. Moreover, it has also been shown that increasing the number of reflecting elements can bring more gain in secrecy performance than that of the transmit antennas.
Channel reciprocity greatly facilitates downlink precoding in time-division duplexing (TDD) multiple-input multiple-output (MIMO) communications without the need for channel state information (CSI) feedback. Recently, reconfigurable intelligent surfa ces (RISs) emerge as a promising technology to enhance the performance of future wireless networks. However, since the artificial electromagnetic characteristics of RISs do not strictly follow the normal laws of nature, it brings up a question: does the channel reciprocity hold in RIS-assisted TDD wireless networks? After briefly reviewing the reciprocity theorem, in this article, we show that there still exists channel reciprocity for RIS-assisted wireless networks satisfying certain conditions. We also experimentally demonstrate the reciprocity at the sub-6 GHz and the millimeter-wave frequency bands by using two fabricated RISs. Furthermore, we introduce several RIS-assisted approaches to realizing nonreciprocal channels. Finally, potential opportunities brought by reciprocal/nonreciprocal RISs and future research directions are outlined.
82 - Yiming Liu , Erwu Liu , Rui Wang 2020
To achieve the joint active and passive beamforming gains in the reconfigurable intelligent surface assisted millimeter wave system, the reflected cascade channel needs to be accurately estimated. Many strategies have been proposed in the literature to solve this issue. However, whether the Cramer-Rao lower bound (CRLB) of such estimation is achievable still remains uncertain. To fill this gap, we first convert the channel estimation problem into a sparse signal recovery problem by utilizing the properties of discrete Fourier transform matrix and Kronecker product. Then, a joint typicality based estimator is utilized to carry out the signal recovery task. We show that, through both mathematical proofs and numerical simulations, the solution proposed in this letter can in fact asymptotically achieve the CRLB.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا