ترغب بنشر مسار تعليمي؟ اضغط هنا

Simpler Certified Radius Maximization by Propagating Covariances

68   0   0.0 ( 0 )
 نشر من قبل Xingjian Zhen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

One strategy for adversarially training a robust model is to maximize its certified radius -- the neighborhood around a given training sample for which the models prediction remains unchanged. The scheme typically involves analyzing a smoothed classifier where one estimates the prediction corresponding to Gaussian samples in the neighborhood of each sample in the mini-batch, accomplished in practice by Monte Carlo sampling. In this paper, we investigate the hypothesis that this sampling bottleneck can potentially be mitigated by identifying ways to directly propagate the covariance matrix of the smoothed distribution through the network. To this end, we find that other than certain adjustments to the network, propagating the covariances must also be accompanied by additional accounting that keeps track of how the distributional moments transform and interact at each stage in the network. We show how satisfying these criteria yields an algorithm for maximizing the certified radius on datasets including Cifar-10, ImageNet, and Places365 while offering runtime savings on networks with moderate depth, with a small compromise in overall accuracy. We describe the details of the key modifications that enable practical use. Via various experiments, we evaluate when our simplifications are sensible, and what the key benefits and limitations are.

قيم البحث

اقرأ أيضاً

175 - Fei Ye , Adrian G. Bors 2021
Learning disentangled and interpretable representations is an important step towards accomplishing comprehensive data representations on the manifold. In this paper, we propose a novel representation learning algorithm which combines the inference ab ilities of Variational Autoencoders (VAE) with the generalization capability of Generative Adversarial Networks (GAN). The proposed model, called InfoVAEGAN, consists of three networks~: Encoder, Generator and Discriminator. InfoVAEGAN aims to jointly learn discrete and continuous interpretable representations in an unsupervised manner by using two different data-free log-likelihood functions onto the variables sampled from the generators distribution. We propose a two-stage algorithm for optimizing the inference network separately from the generator training. Moreover, we enforce the learning of interpretable representations through the maximization of the mutual information between the existing latent variables and those created through generative and inference processes.
241 - Zhiming Zhou , Han Cai , Shu Rong 2017
Class labels have been empirically shown useful in improving the sample quality of generative adversarial nets (GANs). In this paper, we mathematically study the properties of the current variants of GANs that make use of class label information. Wit h class aware gradient and cross-entropy decomposition, we reveal how class labels and associated losses influence GANs training. Based on that, we propose Activation Maximization Generative Adversarial Networks (AM-GAN) as an advanced solution. Comprehensive experiments have been conducted to validate our analysis and evaluate the effectiveness of our solution, where AM-GAN outperforms other strong baselines and achieves state-of-the-art Inception Score (8.91) on CIFAR-10. In addition, we demonstrate that, with the Inception ImageNet classifier, Inception Score mainly tracks the diversity of the generator, and there is, however, no reliable evidence that it can reflect the true sample quality. We thus propose a new metric, called AM Score, to provide a more accurate estimation of the sample quality. Our proposed model also outperforms the baseline methods in the new metric.
Any clustering algorithm must synchronously learn to model the clusters and allocate data to those clusters in the absence of labels. Mixture model-based methods model clusters with pre-defined statistical distributions and allocate data to those clu sters based on the cluster likelihoods. They iteratively refine those distribution parameters and member assignments following the Expectation-Maximization (EM) algorithm. However, the cluster representability of such hand-designed distributions that employ a limited amount of parameters is not adequate for most real-world clustering tasks. In this paper, we realize mixture model-based clustering with a neural network where the final layer neurons, with the aid of an additional transformation, approximate cluster distribution outputs. The network parameters pose as the parameters of those distributions. The result is an elegant, much-generalized representation of clusters than a restricted mixture of hand-designed distributions. We train the network end-to-end via batch-wise EM iterations where the forward pass acts as the E-step and the backward pass acts as the M-step. In image clustering, the mixture-based EM objective can be used as the clustering objective along with existing representation learning methods. In particular, we show that when mixture-EM optimization is fused with consistency optimization, it improves the sole consistency optimization performance in clustering. Our trained networks outperform single-stage deep clustering methods that still depend on k-means, with unsupervised classification accuracy of 63.8% in STL10, 58% in CIFAR10, 25.9% in CIFAR100, and 98.9% in MNIST.
85 - Haowen Lin , Jian Lou , Li Xiong 2021
Adversarial data examples have drawn significant attention from the machine learning and security communities. A line of work on tackling adversarial examples is certified robustness via randomized smoothing that can provide a theoretical robustness guarantee. However, such a mechanism usually uses floating-point arithmetic for calculations in inference and requires large memory footprints and daunting computational costs. These defensive models cannot run efficiently on edge devices nor be deployed on integer-only logical units such as Turing Tensor Cores or integer-only ARM processors. To overcome these challenges, we propose an integer randomized smoothing approach with quantization to convert any classifier into a new smoothed classifier, which uses integer-only arithmetic for certified robustness against adversarial perturbations. We prove a tight robustness guarantee under L2-norm for the proposed approach. We show our approach can obtain a comparable accuracy and 4x~5x speedup over floating-point arithmetic certified robust methods on general-purpose CPUs and mobile devices on two distinct datasets (CIFAR-10 and Caltech-101).
Recently, bound propagation based certified robust training methods have been proposed for training neural networks with certifiable robustness guarantees. Despite that state-of-the-art (SOTA) methods including interval bound propagation (IBP) and CR OWN-IBP have per-batch training complexity similar to standard neural network training, they usually use a long warmup schedule with hundreds or thousands epochs to reach SOTA performance and are thus still costly. In this paper, we identify two important issues in existing methods, namely exploded bounds at initialization, and the imbalance in ReLU activation states. These two issues make certified training difficult and unstable, and thereby long warmup schedules were needed in prior works. To mitigate these issues and conduct certified training with shorter warmup, we propose three improvements: 1) We derive a new weight initialization method for IBP training; 2) We propose to fully add Batch Normalization (BN) to each layer in the model, since we find BN can reduce the imbalance in ReLU activation states; 3) We also design regularization to explicitly tighten certified bounds and balance ReLU activation states. In our experiments, we are able to obtain 65.03% verified error on CIFAR-10 ($epsilon=frac{8}{255}$) and 82.36% verified error on TinyImageNet ($epsilon=frac{1}{255}$) using very short training schedules (160 and 80 total epochs, respectively), outperforming literature SOTA trained with hundreds or thousands epochs under the same network architecture.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا