ﻻ يوجد ملخص باللغة العربية
We present a multi-camera 3D pedestrian detection method that does not need to train using data from the target scene. We estimate pedestrian location on the ground plane using a novel heuristic based on human body poses and persons bounding boxes from an off-the-shelf monocular detector. We then project these locations onto the world ground plane and fuse them with a new formulation of a clique cover problem. We also propose an optional step for exploiting pedestrian appearance during fusion by using a domain-generalizable person re-identification model. We evaluated the proposed approach on the challenging WILDTRACK dataset. It obtained a MODA of 0.569 and an F-score of 0.78, superior to state-of-the-art generalizable detection techniques.
Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. Recently, aggregating features from multiple layers of a CNN has been considered as an e
Detecting pedestrians is a crucial task in autonomous driving systems to ensure the safety of drivers and pedestrians. The technologies involved in these algorithms must be precise and reliable, regardless of environment conditions. Relying solely on
Single-image 3D shape reconstruction is an important and long-standing problem in computer vision. A plethora of existing works is constantly pushing the state-of-the-art performance in the deep learning era. However, there remains a much more diffic
Pedestrian detection benefits greatly from deep convolutional neural networks (CNNs). However, it is inherently hard for CNNs to handle situations in the presence of occlusion and scale variation. In this paper, we propose W$^3$Net, which attempts to
Pedestrian detection in a crowd is a challenging task due to a high number of mutually-occluding human instances, which brings ambiguity and optimization difficulties to the current IoU-based ground truth assignment procedure in classical object dete