ﻻ يوجد ملخص باللغة العربية
Pedestrian detection benefits greatly from deep convolutional neural networks (CNNs). However, it is inherently hard for CNNs to handle situations in the presence of occlusion and scale variation. In this paper, we propose W$^3$Net, which attempts to address above challenges by decomposing the pedestrian detection task into textbf{textit{W}}here, textbf{textit{W}}hat and textbf{textit{W}}hether problem directing against pedestrian localization, scale prediction and classification correspondingly. Specifically, for a pedestrian instance, we formulate its feature by three steps. i) We generate a bird view map, which is naturally free from occlusion issues, and scan all points on it to look for suitable locations for each pedestrian instance. ii) Instead of utilizing pre-fixed anchors, we model the interdependency between depth and scale aiming at generating depth-guided scales at different locations for better matching instances of different sizes. iii) We learn a latent vector shared by both visual and corpus space, by which false positives with similar vertical structure but lacking human partial features would be filtered out. We achieve state-of-the-art results on widely used datasets (Citypersons and Caltech). In particular. when evaluating on heavy occlusion subset, our results reduce MR$^{-2}$ from 49.3$%$ to 18.7$%$ on Citypersons, and from 45.18$%$ to 28.33$%$ on Caltech.
Pedestrian behavior prediction is one of the major challenges for intelligent driving systems in urban environments. Pedestrians often exhibit a wide range of behaviors and adequate interpretations of those depend on various sources of information su
We present a multi-camera 3D pedestrian detection method that does not need to train using data from the target scene. We estimate pedestrian location on the ground plane using a novel heuristic based on human body poses and persons bounding boxes fr
Consider end-to-end training of a multi-modal vs. a single-modal network on a task with multiple input modalities: the multi-modal network receives more information, so it should match or outperform its single-modal counterpart. In our experiments, h
Pedestrian detection based on the combination of Convolutional Neural Network (i.e., CNN) and traditional handcrafted features (i.e., HOG+LUV) has achieved great success. Generally, HOG+LUV are used to generate the candidate proposals and then CNN cl
Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. Recently, aggregating features from multiple layers of a CNN has been considered as an e