ترغب بنشر مسار تعليمي؟ اضغط هنا

Towards Algorithmic Transparency: A Diversity Perspective

84   0   0.0 ( 0 )
 نشر من قبل Jahna Otterbacher
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

As the role of algorithmic systems and processes increases in society, so does the risk of bias, which can result in discrimination against individuals and social groups. Research on algorithmic bias has exploded in recent years, highlighting both the problems of bias, and the potential solutions, in terms of algorithmic transparency (AT). Transparency is important for facilitating fairness management as well as explainability in algorithms; however, the concept of diversity, and its relationship to bias and transparency, has been largely left out of the discussion. We reflect on the relationship between diversity and bias, arguing that diversity drives the need for transparency. Using a perspective-taking lens, which takes diversity as a given, we propose a conceptual framework to characterize the problem and solution spaces of AT, to aid its application in algorithmic systems. Example cases from three research domains are described using our framework.



قيم البحث

اقرأ أيضاً

It has become trivial to point out how decision-making processes in various social, political and economical sphere are assisted by automated systems. Improved efficiency, the hallmark of these systems, drives the mass scale integration of automated systems into daily life. However, as a robust body of research in the area of algorithmic injustice shows, algorithmic tools embed and perpetuate societal and historical biases and injustice. In particular, a persistent recurring trend within the literature indicates that societys most vulnerable are disproportionally impacted. When algorithmic injustice and bias is brought to the fore, most of the solutions on offer 1) revolve around technical solutions and 2) do not focus centre disproportionally impacted groups. This paper zooms out and draws the bigger picture. It 1) argues that concerns surrounding algorithmic decision making and algorithmic injustice require fundamental rethinking above and beyond technical solutions, and 2) outlines a way forward in a manner that centres vulnerable groups through the lens of relational ethics.
Increasingly, scholars seek to integrate legal and technological insights to combat bias in AI systems. In recent years, many different definitions for ensuring non-discrimination in algorithmic decision systems have been put forward. In this paper, we first briefly describe the EU law framework covering cases of algorithmic discrimination. Second, we present an algorithm that harnesses optimal transport to provide a flexible framework to interpolate between different fairness definitions. Third, we show that important normative and legal challenges remain for the implementation of algorithmic fairness interventions in real-world scenarios. Overall, the paper seeks to contribute to the quest for flexible technical frameworks that can be adapted to varying legal and normative fairness constraints.
Society increasingly relies on machine learning models for automated decision making. Yet, efficiency gains from automation have come paired with concern for algorithmic discrimination that can systematize inequality. Recent work has proposed optimal post-processing methods that randomize classification decisions for a fraction of individuals, in order to achieve fairness measures related to parity in errors and calibration. These methods, however, have raised concern due to the information inefficiency, intra-group unfairness, and Pareto sub-optimality they entail. The present work proposes an alternative active framework for fair classification, where, in deployment, a decision-maker adaptively acquires information according to the needs of different groups or individuals, towards balancing disparities in classification performance. We propose two such methods, where information collection is adapted to group- and individual-level needs respectively. We show on real-world datasets that these can achieve: 1) calibration and single error parity (e.g., equal opportunity); and 2) parity in both false positive and false negative rates (i.e., equal odds). Moreover, we show that by leveraging their additional degree of freedom, active approaches can substantially outperform randomization-based classifiers previously considered optimal, while avoiding limitations such as intra-group unfairness.
Conventional algorithmic fairness is West-centric, as seen in its sub-groups, values, and methods. In this paper, we de-center algorithmic fairness and analyse AI power in India. Based on 36 qualitative interviews and a discourse analysis of algorith mic deployments in India, we find that several assumptions of algorithmic fairness are challenged. We find that in India, data is not always reliable due to socio-economic factors, ML makers appear to follow double standards, and AI evokes unquestioning aspiration. We contend that localising model fairness alone can be window dressing in India, where the distance between models and oppressed communities is large. Instead, we re-imagine algorithmic fairness in India and provide a roadmap to re-contextualise data and models, empower oppressed communities, and enable Fair-ML ecosystems.
There has been rapidly growing interest in the use of algorithms in hiring, especially as a means to address or mitigate bias. Yet, to date, little is known about how these methods are used in practice. How are algorithmic assessments built, validate d, and examined for bias? In this work, we document and analyze the claims and practices of companies offering algorithms for employment assessment. In particular, we identify vendors of algorithmic pre-employment assessments (i.e., algorithms to screen candidates), document what they have disclosed about their development and validation procedures, and evaluate their practices, focusing particularly on efforts to detect and mitigate bias. Our analysis considers both technical and legal perspectives. Technically, we consider the various choices vendors make regarding data collection and prediction targets, and explore the risks and trade-offs that these choices pose. We also discuss how algorithmic de-biasing techniques interface with, and create challenges for, antidiscrimination law.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا