ترغب بنشر مسار تعليمي؟ اضغط هنا

Re-imagining Algorithmic Fairness in India and Beyond

89   0   0.0 ( 0 )
 نشر من قبل Vinodkumar Prabhakaran
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Conventional algorithmic fairness is West-centric, as seen in its sub-groups, values, and methods. In this paper, we de-center algorithmic fairness and analyse AI power in India. Based on 36 qualitative interviews and a discourse analysis of algorithmic deployments in India, we find that several assumptions of algorithmic fairness are challenged. We find that in India, data is not always reliable due to socio-economic factors, ML makers appear to follow double standards, and AI evokes unquestioning aspiration. We contend that localising model fairness alone can be window dressing in India, where the distance between models and oppressed communities is large. Instead, we re-imagine algorithmic fairness in India and provide a roadmap to re-contextualise data and models, empower oppressed communities, and enable Fair-ML ecosystems.



قيم البحث

اقرأ أيضاً

Conventional algorithmic fairness is Western in its sub-groups, values, and optimizations. In this paper, we ask how portable the assumptions of this largely Western take on algorithmic fairness are to a different geo-cultural context such as India. Based on 36 expert interviews with Indian scholars, and an analysis of emerging algorithmic deployments in India, we identify three clusters of challenges that engulf the large distance between machine learning models and oppressed communities in India. We argue that a mere translation of technical fairness work to Indian subgroups may serve only as a window dressing, and instead, call for a collective re-imagining of Fair-ML, by re-contextualising data and models, empowering oppressed communities, and more importantly, enabling ecosystems.
Society increasingly relies on machine learning models for automated decision making. Yet, efficiency gains from automation have come paired with concern for algorithmic discrimination that can systematize inequality. Recent work has proposed optimal post-processing methods that randomize classification decisions for a fraction of individuals, in order to achieve fairness measures related to parity in errors and calibration. These methods, however, have raised concern due to the information inefficiency, intra-group unfairness, and Pareto sub-optimality they entail. The present work proposes an alternative active framework for fair classification, where, in deployment, a decision-maker adaptively acquires information according to the needs of different groups or individuals, towards balancing disparities in classification performance. We propose two such methods, where information collection is adapted to group- and individual-level needs respectively. We show on real-world datasets that these can achieve: 1) calibration and single error parity (e.g., equal opportunity); and 2) parity in both false positive and false negative rates (i.e., equal odds). Moreover, we show that by leveraging their additional degree of freedom, active approaches can substantially outperform randomization-based classifiers previously considered optimal, while avoiding limitations such as intra-group unfairness.
Using the concept of principal stratification from the causal inference literature, we introduce a new notion of fairness, called principal fairness, for human and algorithmic decision-making. The key idea is that one should not discriminate among in dividuals who would be similarly affected by the decision. Unlike the existing statistical definitions of fairness, principal fairness explicitly accounts for the fact that individuals can be impacted by the decision. We propose an axiomatic assumption that all groups are created equal. This assumption is motivated by a belief that protected attributes such as race and gender should have no direct causal effects on potential outcomes. Under this assumption, we show that principal fairness implies all three existing statistical fairness criteria once we account for relevant covariates. This result also highlights the essential role of conditioning covariates in resolving the previously recognized tradeoffs between the existing statistical fairness criteria. Finally, we discuss how to empirically choose conditioning covariates and then evaluate the principal fairness of a particular decision.
Increasingly, scholars seek to integrate legal and technological insights to combat bias in AI systems. In recent years, many different definitions for ensuring non-discrimination in algorithmic decision systems have been put forward. In this paper, we first briefly describe the EU law framework covering cases of algorithmic discrimination. Second, we present an algorithm that harnesses optimal transport to provide a flexible framework to interpolate between different fairness definitions. Third, we show that important normative and legal challenges remain for the implementation of algorithmic fairness interventions in real-world scenarios. Overall, the paper seeks to contribute to the quest for flexible technical frameworks that can be adapted to varying legal and normative fairness constraints.
Increasingly, discrimination by algorithms is perceived as a societal and legal problem. As a response, a number of criteria for implementing algorithmic fairness in machine learning have been developed in the literature. This paper proposes the Cont inuous Fairness Algorithm (CFA$theta$) which enables a continuous interpolation between different fairness definitions. More specifically, we make three main contributions to the existing literature. First, our approach allows the decision maker to continuously vary between specific concepts of individual and group fairness. As a consequence, the algorithm enables the decision maker to adopt intermediate ``worldviews on the degree of discrimination encoded in algorithmic processes, adding nuance to the extreme cases of ``were all equal (WAE) and ``what you see is what you get (WYSIWYG) proposed so far in the literature. Second, we use optimal transport theory, and specifically the concept of the barycenter, to maximize decision maker utility under the chosen fairness constraints. Third, the algorithm is able to handle cases of intersectionality, i.e., of multi-dimensional discrimination of certain groups on grounds of several criteria. We discuss three main examples (credit applications; college admissions; insurance contracts) and map out the legal and policy implications of our approach. The explicit formalization of the trade-off between individual and group fairness allows this post-processing approach to be tailored to different situational contexts in which one or the other fairness criterion may take precedence. Finally, we evaluate our model experimentally.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا