ﻻ يوجد ملخص باللغة العربية
Computer science has grown rapidly since its inception in the 1950s and the pioneers in the field are celebrated annually by the A.M. Turing Award. In this paper, we attempt to shed light on the path to influential computer scientists by examining the characteristics of the 72 Turing Award laureates. To achieve this goal, we build a comprehensive dataset of the Turing Award laureates and analyze their characteristics, including their personal information, family background, academic background, and industry experience. The FP-Growth algorithm is used for frequent feature mining. Logistic regression plot, pie chart, word cloud and map are generated accordingly for each of the interesting features to uncover insights regarding personal factors that drive influential work in the field of computer science. In particular, we show that the Turing Award laureates are most commonly white, male, married, United States citizen, and received a PhD degree. Our results also show that the age at which the laureate won the award increases over the years; most of the Turing Award laureates did not major in computer science; birth order is strongly related to the winners success; and the number of citations is not as important as one would expect.
The ACM A.M. Turing Award is commonly acknowledged as the highest distinction in the realm of computer science. Since 1960s, it has been awarded to computer scientists who made outstanding contributions. The significance of this award is far-reaching
We propose here to make the connection between the definitions given by Turing and Wittgenstein about what it means to follow a rule. It will be here a presentation of the Turing test in order to observe that humans and machines have more in common t
It is assumed that the holographic complexities such as the complexity-action (CA) and the complexity-volume (CV) conjecture are dual to complexity in field theory. However, because the definition of the complexity in field theory is still not comple
The angel-devil game is played on an infinite two-dimensional ``chessboard. The squares of the board are all white at the beginning. The players called angel and devil take turns in their steps. When it is the devils turn, he can turn a square black.
It was observed that the spatiotemporal chaos in lattices of coupled chaotic maps was suppressed to a spatiotemporal fixed point when some fraction of the regular coupling connections were replaced by random links. Here we investigate the effects of