ﻻ يوجد ملخص باللغة العربية
The angel-devil game is played on an infinite two-dimensional ``chessboard. The squares of the board are all white at the beginning. The players called angel and devil take turns in their steps. When it is the devils turn, he can turn a square black. The angel always stays on a white square, and when it is her turn she can fly at a distance of at most J steps (each of which can be horizontal, vertical or diagonal) to a new white square. Here J is a constant. The devil wins if the angel does not find any more white squares to land on. The result of the paper is that if J is sufficiently large then the angel has a strategy such that the devil will never capture her. This deceptively easy-sounding result has been a conjecture, surprisingly, for about thirty years. Several other independent solutions have appeared simultaneously, some of them prove that J=2 is sufficient (see the Wikipedia on the angel problem). Still, it is hoped that the hierarchical solution presented here may prove useful for some generalizations.
The classification experiments covered by machine learning (ML) are composed by two important parts: the data and the algorithm. As they are a fundamental part of the problem, both must be considered when evaluating a models performance against a ben
Computer science has grown rapidly since its inception in the 1950s and the pioneers in the field are celebrated annually by the A.M. Turing Award. In this paper, we attempt to shed light on the path to influential computer scientists by examining th
Nakamoto invented the longest chain protocol, and claimed its security by analyzing the private double-spend attack, a race between the adversary and the honest nodes to grow a longer chain. But is it the worst attack? We answer the question in the a
Despite the great success of deep learning, recent works show that large deep neural networks are often highly redundant and can be significantly reduced in size. However, the theoretical question of how much we can prune a neural network given a spe
Deep networks were recently suggested to face the odds between accuracy (on clean natural images) and robustness (on adversarially perturbed images) (Tsipras et al., 2019). Such a dilemma is shown to be rooted in the inherently higher sample complexi