ﻻ يوجد ملخص باللغة العربية
It is assumed that the holographic complexities such as the complexity-action (CA) and the complexity-volume (CV) conjecture are dual to complexity in field theory. However, because the definition of the complexity in field theory is still not complete, the confirmation of the holographic duality of the complexity is ambiguous. To improve this situation, we approach the problem from a different angle. We first identify minimal and genuin properties that the filed theory dual of the holographic complexity should satisfy without assuming anything from the circuit complexity or the information theory. Based on these properties, we propose a field theory formula dual to the holographic complexity. Our field theory formula implies that the complexity between certain states in two dimensional CFTs is given by the Liouville action, which is compatible with the path-integral complexity. It gives natural interpretations for both the CA and CV conjectures and identify what their reference states are. When applied to the thermo-field double states, it also gives consistent results with the holographic results in the CA conjecture: both the divergent term and finite term.
In this paper, taking the large $R$ limit and using the complexity-volume duality, we investigate the holographic complexity growth rate of a field state defined on the universe located at an asymptotical AdS boundary in Gauss-Bonnet gravity and mass
We study holographic subregion complexity, and its possible connection to purification complexity suggested recently by Agon et al. In particular, we study the conjecture that subregion complexity is the purification complexity by considering hologra
Quantum complexity of a thermofield double state in a strongly coupled quantum field theory has been argued to be holographically related to the action evaluated on the Wheeler-DeWitt patch. The growth rate of quantum complexity in systems dual to Ei
We study the holographic complexity conjectures for rotating black holes, uncovering a relationship between the complexity of formation and the thermodynamic volume of the black hole. We suggest that it is the thermodynamic volume and not the entropy
We use the complexity = action (CA) conjecture to study the full-time dependence of holographic complexity in anisotropic black branes. We find that the time behaviour of holographic complexity of anisotropic systems shares a lot of similarities with