ﻻ يوجد ملخص باللغة العربية
Application of deep neural networks to medical imaging tasks has in some sense become commonplace. Still, a thorn in the side of the deep learning movement is the argument that deep networks are prone to overfitting and are thus unable to generalize well when datasets are small (as is common in medical imaging tasks). One way to bolster confidence is to provide mathematical guarantees, or bounds, on network performance after training which explicitly quantify the possibility of overfitting. In this work, we explore recent advances using the PAC-Bayesian framework to provide bounds on generalization error for large (stochastic) networks. While previous efforts focus on classification in larger natural image datasets (e.g., MNIST and CIFAR-10), we apply these techniques to both classification and segmentation in a smaller medical imagining dataset: the ISIC 2018 challenge set. We observe the resultant bounds are competitive compared to a simpler baseline, while also being more explainable and alleviating the need for holdout sets.
We introduce a probabilistic robustness measure for Bayesian Neural Networks (BNNs), defined as the probability that, given a test point, there exists a point within a bounded set such that the BNN prediction differs between the two. Such a measure c
Verifying correctness of deep neural networks (DNNs) is challenging. We study a generic reachability problem for feed-forward DNNs which, for a given set of inputs to the network and a Lipschitz-continuous function over its outputs, computes the lowe
We present a deep convolutional neural network for breast cancer screening exam classification, trained and evaluated on over 200,000 exams (over 1,000,000 images). Our network achieves an AUC of 0.895 in predicting whether there is a cancer in the b
Contrastive unsupervised representation learning (CURL) is the state-of-the-art technique to learn representations (as a set of features) from unlabelled data. While CURL has collected several empirical successes recently, theoretical understanding o
In this paper, we derive generalization bounds for the two primary classes of graph neural networks (GNNs), namely graph convolutional networks (GCNs) and message passing GNNs (MPGNNs), via a PAC-Bayesian approach. Our result reveals that the maximum