ترغب بنشر مسار تعليمي؟ اضغط هنا

A PAC-Bayesian Approach to Generalization Bounds for Graph Neural Networks

112   0   0.0 ( 0 )
 نشر من قبل Renjie Liao
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper, we derive generalization bounds for the two primary classes of graph neural networks (GNNs), namely graph convolutional networks (GCNs) and message passing GNNs (MPGNNs), via a PAC-Bayesian approach. Our result reveals that the maximum node degree and spectral norm of the weights govern the generalization bounds of both models. We also show that our bound for GCNs is a natural generalization of the results developed in arXiv:1707.09564v2 [cs.LG] for fully-connected and convolutional neural networks. For message passing GNNs, our PAC-Bayes bound improves over the Rademacher complexity based bound in arXiv:2002.06157v1 [cs.LG], showing a tighter dependency on the maximum node degree and the maximum hidden dimension. The key ingredients of our proofs are a perturbation analysis of GNNs and the generalization of PAC-Bayes analysis to non-homogeneous GNNs. We perform an empirical study on several real-world graph datasets and verify that our PAC-Bayes bound is tighter than others.



قيم البحث

اقرأ أيضاً

We present a generalization bound for feedforward neural networks in terms of the product of the spectral norm of the layers and the Frobenius norm of the weights. The generalization bound is derived using a PAC-Bayes analysis.
192 - Vera Shalaeva 2019
In this paper, we improve the PAC-Bayesian error bound for linear regression derived in Germain et al. [10]. The improvements are twofold. First, the proposed error bound is tighter, and converges to the generalization loss with a well-chosen tempera ture parameter. Second, the error bound also holds for training data that are not independently sampled. In particular, the error bound applies to certain time series generated by well-known classes of dynamical models, such as ARX models.
Existing guarantees in terms of rigorous upper bounds on the generalization error for the original random forest algorithm, one of the most frequently used machine learning methods, are unsatisfying. We discuss and evaluate various PAC-Bayesian appro aches to derive such bounds. The bounds do not require additional hold-out data, because the out-of-bag samples from the bagging in the training process can be exploited. A random forest predicts by taking a majority vote of an ensemble of decision trees. The first approach is to bound the error of the vote by twice the error of the corresponding Gibbs classifier (classifying with a single member of the ensemble selected at random). However, this approach does not take into account the effect of averaging out of errors of individual classifiers when taking the majority vote. This effect provides a significant boost in performance when the errors are independent or negatively correlated, but when the correlations are strong the advantage from taking the majority vote is small. The second approach based on PAC-Bayesian C-bounds takes dependencies between ensemble members into account, but it requires estimating correlations between the errors of the individual classifiers. When the correlations are high or the estimation is poor, the bounds degrade. In our experiments, we compute generalization bounds for random forests on various benchmark data sets. Because the individual decision trees already perform well, their predictions are highly correlated and the C-bounds do not lead to satisfactory results. For the same reason, the bounds based on the analysis of Gibbs classifiers are typically superior and often reasonably tight. Bounds based on a validation set coming at the cost of a smaller training set gave better performance guarantees, but worse performance in most experiments.
Gaussian Processes (GPs) are a generic modelling tool for supervised learning. While they have been successfully applied on large datasets, their use in safety-critical applications is hindered by the lack of good performance guarantees. To this end, we propose a method to learn GPs and their sparse approximations by directly optimizing a PAC-Bayesian bound on their generalization performance, instead of maximizing the marginal likelihood. Besides its theoretical appeal, we find in our evaluation that our learning method is robust and yields significantly better generalization guarantees than other common GP approaches on several regression benchmark datasets.
We present an efficient coresets-based neural network compression algorithm that sparsifies the parameters of a trained fully-connected neural network in a manner that provably approximates the networks output. Our approach is based on an importance sampling scheme that judiciously defines a sampling distribution over the neural network parameters, and as a result, retains parameters of high importance while discarding redundant ones. We leverage a novel, empirical notion of sensitivity and extend traditional coreset constructions to the application of compressing parameters. Our theoretical analysis establishes guarantees on the size and accuracy of the resulting compressed network and gives rise to generalization bounds that may provide new insights into the generalization properties of neural networks. We demonstrate the practical effectiveness of our algorithm on a variety of neural network configurations and real-world data sets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا