ترغب بنشر مسار تعليمي؟ اضغط هنا

Interpreting the charge-dependent flow and constraining the chiral magnetic wave with event shape engineering

84   0   0.0 ( 0 )
 نشر من قبل Qiye Shou
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The charge asymmetry (Ach) dependence of anisotropic flow serves as an important tool to search for the chiral magnetic wave (CMW) in heavy-ion collisions. However, the background effect, such as the local charge conservation (LCC) entwined with collective flow, has not yet been unambiguously eliminated in the measurement. With the help of two models, the AMPT with initial quadrupole moment and the blast wave (BW) incorporating LCC, we discuss the features of the LCC-induced and the CMW-induced correlations between Ach and the flow. More importantly, we first propose to use the Event Shape Engineering (ESE) technique to distinguish the background and the signal for the CMW study. This method would be highly desirable in the experimental search for the CMW and provides more insights for understanding the charge-dependent collective motion of the quark-gluon plasma.



قيم البحث

اقرأ أيضاً

The charge asymmetry ($A_{rm ch}$) dependence of the $pi^{-}$ and $pi^{+}$ elliptic flow difference, $Delta v_{2}(A_{rm ch})$, has been regarded as a sensitive observable for the possible chiral magnetic wave (CMW) in relativistic heavy ion collision s. In this work, we first demonstrate that, due to non-flow backgrounds, the flow measurements by the Q-cumulant method using all charged particles as reference introduce a trivial linear term to $Delta v_{2}(A_{rm ch})$. The trivial slope can be negative in the triangle flow difference $Delta v_{3}(A_{rm ch})$ if the non-flow is dominated by back-to-back pairs. After eliminating the trivial term, we find that the non-flow between like-sign pairs gives rise to an additional positive slope to $Delta v_{2}(A_{rm ch})$ because of the larger dilution effect to $pi^{+}$ ($pi^{-}$) at positive (negative) $A_{rm ch}$. We further find that the competition between different $pi$ sources can introduce another non-trivial linear-$A_{rm ch}$ term due to their different multiplicity fluctuations and anisotropic flows. We then study the effect of neutral cluster (resonance) decays as a mechanism for local charge conservation on the slope parameter of $Delta v_{2}(A_{rm ch})$. We find that the slope parameter is sensitive to the kinematics of those neutral clusters. Light resonances give positive slopes while heavy resonances give negative slopes. Local charge conservation from continuum cluster mass distribution can give a positive slope parameter comparable to experimental data. Our studies indicate that many non-CMW physics mechanisms can give rise to a $A_{rm ch}$-dependent $Delta v_{2}(A_{rm ch})$ and the interpretation of $Delta v_{2}(A_{rm ch})$ in terms of the CMW is delicate.
The chiral magnetic wave (CMW) is sought using the charge asymmetry ($A_{rm ch}$) dependence of anisotropic flow in heavy-ion collisions. The charge dependent transverse momentum ($p_{rm T}$), however, could play a role as a background. With the stri ng fragmentation models, including PYTHIA, we demonstrate the origin of the $A_{rm ch}-p_{rm T}$ correlation and its connection with the local charge conservation (LCC). The impact of $A_{rm ch}-p_{rm T}$ and its behavior in varied kinematic windows are also discussed. This study provides more insights for the search for the CMW and comprehending the collective motion of the quark-gluon plasma.
The Chiral Magnetic Wave (CMW) [1] predicts a dependence of the positive and negative particle elliptic flow on the event charge asymmetry. Such a dependence has been observed by the STAR Collaboration [2]. However, it is rather difficult to interpre t the results of this measurement, as well as to perform cross-experiment comparisons, due to the dependence of the observable on experimental inefficiencies and the kinematic acceptance used to determine the net asymmetry. We propose another observable that is free from these deficiencies. It also provides possibilities for differential measurements clarifying the interpretation of the results. We use this new observable to study the effect of the local charge conservation that can mimic the effect of the CMW in charge dependent flow measurements.
We present measurements of $pi^-$ and $pi^+$ elliptic flow, $v_2$, at midrapidity in Au+Au collisions at $sqrt{s_{_{rm NN}}} =$ 200, 62.4, 39, 27, 19.6, 11.5 and 7.7 GeV, as a function of event-by-event charge asymmetry, $A_{ch}$, based on data from the STAR experiment at RHIC. We find that $pi^-$ ($pi^+$) elliptic flow linearly increases (decreases) with charge asymmetry for most centrality bins at $sqrt{s_{_{rm NN}}} = text{27 GeV}$ and higher. At $sqrt{s_{_{rm NN}}} = text{200 GeV}$, the slope of the difference of $v_2$ between $pi^-$ and $pi^+$ as a function of $A_{ch}$ exhibits a centrality dependence, which is qualitatively similar to calculations that incorporate a chiral magnetic wave effect. Similar centrality dependence is also observed at lower energies.
An observable sensitive to the chiral magnetic wave (CMW) is the charge asymmetry dependence of the $pi^{-}$ and $pi^{+}$ anisotropic flow difference, $Delta v_{n}(A_{rm ch})$. We show that, due to non-flow correlations, the flow measurements by the Q-cumulant method using all charged particles as reference introduce a trivial linear term to $Delta v_{n}(A_{rm ch})$. The trivial slope contribution to the triangle flow difference $Delta v_{3}(A_{rm ch})$ can be negative if the non-flow is dominated by back-to-back pairs. This can explain the observed negative $Delta v_{3}(A_{rm ch})$ slope in the preliminary STAR data. We further find that the non-flow correlations give rise to additional backgrounds to the slope of $Delta v_{2}(A_{rm ch})$ from the competition among different pion sources and from the larger multiplicity dilution to $pi^{+}$ ($pi^{-}$) at positive (negative) $A_{rm ch}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا