ﻻ يوجد ملخص باللغة العربية
An observable sensitive to the chiral magnetic wave (CMW) is the charge asymmetry dependence of the $pi^{-}$ and $pi^{+}$ anisotropic flow difference, $Delta v_{n}(A_{rm ch})$. We show that, due to non-flow correlations, the flow measurements by the Q-cumulant method using all charged particles as reference introduce a trivial linear term to $Delta v_{n}(A_{rm ch})$. The trivial slope contribution to the triangle flow difference $Delta v_{3}(A_{rm ch})$ can be negative if the non-flow is dominated by back-to-back pairs. This can explain the observed negative $Delta v_{3}(A_{rm ch})$ slope in the preliminary STAR data. We further find that the non-flow correlations give rise to additional backgrounds to the slope of $Delta v_{2}(A_{rm ch})$ from the competition among different pion sources and from the larger multiplicity dilution to $pi^{+}$ ($pi^{-}$) at positive (negative) $A_{rm ch}$.
Under the approximate chiral symmetry restoration, quark interactions with topological gluon fields in quantum chromodynamics can induce chirality imbalance and parity violation in local domains. An electric charge separation ({sc cs}) could be gener
The chiral magnetic wave (CMW) is sought using the charge asymmetry ($A_{rm ch}$) dependence of anisotropic flow in heavy-ion collisions. The charge dependent transverse momentum ($p_{rm T}$), however, could play a role as a background. With the stri
The chiral magnetic wave (CMW) has been theorized to propagate in the Quark-Gluon Plasma formed in high-energy heavy-ion collisions. It could cause a finite electric quadrupole moment of the collision system, and may be observed as a dependence of el
The charge asymmetry ($A_{rm ch}$) dependence of the $pi^{-}$ and $pi^{+}$ elliptic flow difference, $Delta v_{2}(A_{rm ch})$, has been regarded as a sensitive observable for the possible chiral magnetic wave (CMW) in relativistic heavy ion collision
The charge asymmetry (Ach) dependence of anisotropic flow serves as an important tool to search for the chiral magnetic wave (CMW) in heavy-ion collisions. However, the background effect, such as the local charge conservation (LCC) entwined with coll