ﻻ يوجد ملخص باللغة العربية
The chiral magnetic wave (CMW) is sought using the charge asymmetry ($A_{rm ch}$) dependence of anisotropic flow in heavy-ion collisions. The charge dependent transverse momentum ($p_{rm T}$), however, could play a role as a background. With the string fragmentation models, including PYTHIA, we demonstrate the origin of the $A_{rm ch}-p_{rm T}$ correlation and its connection with the local charge conservation (LCC). The impact of $A_{rm ch}-p_{rm T}$ and its behavior in varied kinematic windows are also discussed. This study provides more insights for the search for the CMW and comprehending the collective motion of the quark-gluon plasma.
The charge asymmetry ($A_{rm ch}$) dependence of the $pi^{-}$ and $pi^{+}$ elliptic flow difference, $Delta v_{2}(A_{rm ch})$, has been regarded as a sensitive observable for the possible chiral magnetic wave (CMW) in relativistic heavy ion collision
The charge asymmetry (Ach) dependence of anisotropic flow serves as an important tool to search for the chiral magnetic wave (CMW) in heavy-ion collisions. However, the background effect, such as the local charge conservation (LCC) entwined with coll
Under the approximate chiral symmetry restoration, quark interactions with topological gluon fields in quantum chromodynamics can induce chirality imbalance and parity violation in local domains. An electric charge separation ({sc cs}) could be gener
In order to describe the hadronization of polarized quarks, we discuss an extension of the quark-jet model to transverse momentum dependent fragmentation functions. The description is based on a product ansatz, where each factor in the product repres
$textbf{Background:}$ The chiral magnetic effect (CME) is extensively studied in heavy-ion collisions at RHIC and LHC. In the commonly used reaction plane (RP) dependent, charge dependent azimuthal correlator ($Deltagamma$), both the close and back-t