ﻻ يوجد ملخص باللغة العربية
Gradient-based attribution methods can aid in the understanding of convolutional neural networks (CNNs). However, the redundancy of attribution features and the gradient saturation problem, which weaken the ability to identify significant features and cause an explanation focus shift, are challenges that attribution methods still face. In this work, we propose: 1) an essential characteristic, Strong Relevance, when selecting attribution features; 2) a new concept, feature map importance (FMI), to refine the contribution of each feature map, which is faithful to the CNN model; and 3) a novel attribution method via FMI, termed A-FMI, to address the gradient saturation problem, which couples the target image with a reference image, and assigns the FMI to the difference-from-reference at the granularity of feature map. Through visual inspections and qualitative evaluations on the ImageNet dataset, we show the compelling advantages of A-FMI on its faithfulness, insensitivity to the choice of reference, class discriminability, and superior explanation performance compared with popular attribution methods across varying CNN architectures.
We present a study using a class of post-hoc local explanation methods i.e., feature importance methods for understanding a deep learning (DL) emulator of climate. Specifically, we consider a multiple-input-single-output emulator that uses a DenseNet
We propose a technique for producing visual explanations for decisions from a large class of CNN-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concep
We present a caricature generation framework based on shape and style manipulation using StyleGAN. Our framework, dubbed StyleCariGAN, automatically creates a realistic and detailed caricature from an input photo with optional controls on shape exagg
The problem of explaining deep learning models, and model predictions generally, has attracted intensive interest recently. Many successful approaches forgo global approximations in order to provide more faithful local interpretations of the models b
Recent years have witnessed unprecedented success achieved by deep learning models in the field of computer vision. However, their vulnerability towards carefully crafted adversarial examples has also attracted the increasing attention of researchers