ترغب بنشر مسار تعليمي؟ اضغط هنا

Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization

97   0   0.0 ( 0 )
 نشر من قبل Ramprasaath R. Selvaraju
 تاريخ النشر 2016
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a technique for producing visual explanations for decisions from a large class of CNN-based models, making them more transparent. Our approach - Gradient-weighted Class Activation Mapping (Grad-CAM), uses the gradients of any target concept, flowing into the final convolutional layer to produce a coarse localization map highlighting important regions in the image for predicting the concept. Grad-CAM is applicable to a wide variety of CNN model-families: (1) CNNs with fully-connected layers, (2) CNNs used for structured outputs, (3) CNNs used in tasks with multimodal inputs or reinforcement learning, without any architectural changes or re-training. We combine Grad-CAM with fine-grained visualizations to create a high-resolution class-discriminative visualization and apply it to off-the-shelf image classification, captioning, and visual question answering (VQA) models, including ResNet-based architectures. In the context of image classification models, our visualizations (a) lend insights into their failure modes, (b) are robust to adversarial images, (c) outperform previous methods on localization, (d) are more faithful to the underlying model and (e) help achieve generalization by identifying dataset bias. For captioning and VQA, we show that even non-attention based models can localize inputs. We devise a way to identify important neurons through Grad-CAM and combine it with neuron names to provide textual explanations for model decisions. Finally, we design and conduct human studies to measure if Grad-CAM helps users establish appropriate trust in predictions from models and show that Grad-CAM helps untrained users successfully discern a stronger nodel from a weaker one even when both make identical predictions. Our code is available at https://github.com/ramprs/grad-cam/, along with a demo at http://gradcam.cloudcv.org, and a video at youtu.be/COjUB9Izk6E.



قيم البحث

اقرأ أيضاً

Visualizing the features captured by Convolutional Neural Networks (CNNs) is one of the conventional approaches to interpret the predictions made by these models in numerous image recognition applications. Grad-CAM is a popular solution that provides such a visualization by combining the activation maps obtained from the model. However, the average gradient-based terms deployed in this method underestimates the contribution of the representations discovered by the model to its predictions. Addressing this problem, we introduce a solution to tackle this issue by computing the path integral of the gradient-based terms in Grad-CAM. We conduct a thorough analysis to demonstrate the improvement achieved by our method in measuring the importance of the extracted representations for the CNNs predictions, which yields to our methods administration in object localization and model interpretation.
In this paper, we propose an efficient saliency map generation method, called Group score-weighted Class Activation Mapping (Group-CAM), which adopts the split-transform-merge strategy to generate saliency maps. Specifically, for an input image, the class activations are firstly split into groups. In each group, the sub-activations are summed and de-noised as an initial mask. After that, the initial masks are transformed with meaningful perturbations and then applied to preserve sub-pixels of the input (i.e., masked inputs), which are then fed into the network to calculate the confidence scores. Finally, the initial masks are weighted summed to form the final saliency map, where the weights are confidence scores produced by the masked inputs. Group-CAM is efficient yet effective, which only requires dozens of queries to the network while producing target-related saliency maps. As a result, Group-CAM can be served as an effective data augment trick for fine-tuning the networks. We comprehensively evaluate the performance of Group-CAM on common-used benchmarks, including deletion and insertion tests on ImageNet-1k, and pointing game tests on COCO2017. Extensive experimental results demonstrate that Group-CAM achieves better visual performance than the current state-of-the-art explanation approaches. The code is available at https://github.com/wofmanaf/Group-CAM.
To have a better understanding and usage of Convolution Neural Networks (CNNs), the visualization and interpretation of CNNs has attracted increasing attention in recent years. In particular, several Class Activation Mapping (CAM) methods have been p roposed to discover the connection between CNNs decision and image regions. In spite of the reasonable visualization, lack of clear and sufficient theoretical support is the main limitation of these methods. In this paper, we introduce two axioms -- Conservation and Sensitivity -- to the visualization paradigm of the CAM methods. Meanwhile, a dedicated Axiom-based Grad-CAM (XGrad-CAM) is proposed to satisfy these axioms as much as possible. Experiments demonstrate that XGrad-CAM is an enhanced version of Grad-CAM in terms of conservation and sensitivity. It is able to achieve better visualization performance than Grad-CAM, while also be class-discriminative and easy-to-implement compared with Grad-CAM++ and Ablation-CAM. The code is available at https://github.com/Fu0511/XGrad-CAM.
We present Gradient Activation Maps (GAM) - a machinery for explaining predictions made by visual similarity and classification models. By gleaning localized gradient and activation information from multiple network layers, GAM offers improved visual explanations, when compared to existing alternatives. The algorithmic advantages of GAM are explained in detail, and validated empirically, where it is shown that GAM outperforms its alternatives across various tasks and datasets.
Inspired by research in psychology, we introduce a behavioral approach for visual navigation using topological maps. Our goal is to enable a robot to navigate from one location to another, relying only on its visual input and the topological map of t he environment. We propose using graph neural networks for localizing the agent in the map, and decompose the action space into primitive behaviors implemented as convolutional or recurrent neural networks. Using the Gibson simulator, we verify that our approach outperforms relevant baselines and is able to navigate in both seen and unseen environments.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا