ترغب بنشر مسار تعليمي؟ اضغط هنا

Fine-tuning Encoders for Improved Monolingual and Zero-shot Polylingual Neural Topic Modeling

96   0   0.0 ( 0 )
 نشر من قبل Aaron Mueller
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Neural topic models can augment or replace bag-of-words inputs with the learned representations of deep pre-trained transformer-based word prediction models. One added benefit when using representations from multilingual models is that they facilitate zero-shot polylingual topic modeling. However, while it has been widely observed that pre-trained embeddings should be fine-tuned to a given task, it is not immediately clear what supervision should look like for an unsupervised task such as topic modeling. Thus, we propose several methods for fine-tuning encoders to improve both monolingual and zero-shot polylingual neural topic modeling. We consider fine-tuning on auxiliary tasks, constructing a new topic classification task, integrating the topic classification objective directly into topic model training, and continued pre-training. We find that fine-tuning encoder representations on topic classification and integrating the topic classification task directly into topic modeling improves topic quality, and that fine-tuning encoder representations on any task is the most important factor for facilitating cross-lingual transfer.

قيم البحث

اقرأ أيضاً

We present an approach to generating topics using a model trained only for document title generation, with zero examples of topics given during training. We leverage features that capture the relevance of a candidate span in a document for the genera tion of a title for that document. The output is a weighted collection of the phrases that are most relevant for describing the document and distinguishing it within a corpus, without requiring access to the rest of the corpus. We conducted a double-blind trial in which human annotators scored the quality of our machine-generated topics along with original human-written topics associated with news articles from The Guardian and The Huffington Post. The results show that our zero-shot model generates topic labels for news documents that are on average equal to or higher quality than those written by humans, as judged by humans.
We present our work on Track 4 in the Dialogue System Technology Challenges 8 (DSTC8). The DSTC8-Track 4 aims to perform dialogue state tracking (DST) under the zero-shot settings, in which the model needs to generalize on unseen service APIs given a schema definition of these target APIs. Serving as the core for many virtual assistants such as Siri, Alexa, and Google Assistant, the DST keeps track of the users goal and what happened in the dialogue history, mainly including intent prediction, slot filling, and user state tracking, which tests models ability of natural language understanding. Recently, the pretrained language models have achieved state-of-the-art results and shown impressive generalization ability on various NLP tasks, which provide a promising way to perform zero-shot learning for language understanding. Based on this, we propose a schema-guided paradigm for zero-shot dialogue state tracking (SGP-DST) by fine-tuning BERT, one of the most popular pretrained language models. The SGP-DST system contains four modules for intent prediction, slot prediction, slot transfer prediction, and user state summarizing respectively. According to the official evaluation results, our SGP-DST (team12) ranked 3rd on the joint goal accuracy (primary evaluation metric for ranking submissions) and 1st on the requsted slots F1 among 25 participant teams.
93 - Junwei Liao , Yu Shi , Ming Gong 2021
Recently, universal neural machine translation (NMT) with shared encoder-decoder gained good performance on zero-shot translation. Unlike universal NMT, jointly trained language-specific encoders-decoders aim to achieve universal representation acros s non-shared modules, each of which is for a language or language family. The non-shared architecture has the advantage of mitigating internal language competition, especially when the shared vocabulary and model parameters are restricted in their size. However, the performance of using multiple encoders and decoders on zero-shot translation still lags behind universal NMT. In this work, we study zero-shot translation using language-specific encoders-decoders. We propose to generalize the non-shared architecture and universal NMT by differentiating the Transformer layers between language-specific and interlingua. By selectively sharing parameters and applying cross-attentions, we explore maximizing the representation universality and realizing the best alignment of language-agnostic information. We also introduce a denoising auto-encoding (DAE) objective to jointly train the model with the translation task in a multi-task manner. Experiments on two public multilingual parallel datasets show that our proposed model achieves a competitive or better results than universal NMT and strong pivot baseline. Moreover, we experiment incrementally adding new language to the trained model by only updating the new model parameters. With this little effort, the zero-shot translation between this newly added language and existing languages achieves a comparable result with the model trained jointly from scratch on all languages.
Models pretrained with self-supervised objectives on large text corpora achieve state-of-the-art performance on English text summarization tasks. However, these models are typically fine-tuned on hundreds of thousands of data points, an infeasible re quirement when applying summarization to new, niche domains. In this work, we introduce a novel and generalizable method, called WikiTransfer, for fine-tuning pretrained models for summarization in an unsupervised, dataset-specific manner. WikiTransfer fine-tunes pretrained models on pseudo-summaries, produced from generic Wikipedia data, which contain characteristics of the target dataset, such as the length and level of abstraction of the desired summaries. WikiTransfer models achieve state-of-the-art, zero-shot abstractive summarization performance on the CNN-DailyMail dataset and demonstrate the effectiveness of our approach on three additional diverse datasets. These models are more robust to noisy data and also achieve better or comparable few-shot performance using 10 and 100 training examples when compared to few-shot transfer from other summarization datasets. To further boost performance, we employ data augmentation via round-trip translation as well as introduce a regularization term for improved few-shot transfer. To understand the role of dataset aspects in transfer performance and the quality of the resulting output summaries, we further study the effect of the components of our unsupervised fine-tuning data and analyze few-shot performance using both automatic and human evaluation.
Large pre-trained models such as CLIP offer consistent accuracy across a range of data distributions when performing zero-shot inference (i.e., without fine-tuning on a specific dataset). Although existing fine-tuning approaches substantially improve accuracy in-distribution, they also reduce out-of-distribution robustness. We address this tension by introducing a simple and effective method for improving robustness: ensembling the weights of the zero-shot and fine-tuned models. Compared to standard fine-tuning, the resulting weight-space ensembles provide large accuracy improvements out-of-distribution, while matching or improving in-distribution accuracy. On ImageNet and five derived distribution shifts, weight-space ensembles improve out-of-distribution accuracy by 2 to 10 percentage points while increasing in-distribution accuracy by nearly 1 percentage point relative to standard fine-tuning. These improvements come at no additional computational cost during fine-tuning or inference.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا