ترغب بنشر مسار تعليمي؟ اضغط هنا

Convex co-compact groups with one dimensional boundary faces

112   0   0.0 ( 0 )
 نشر من قبل Mitul Islam
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we consider convex co-compact subgroups of the projective linear group. We prove that such a group is relatively hyperbolic with respect to a collection of virtually Abelian subgroups of rank two if and only if each open face in the ideal boundary has dimension at most one. We also introduce the coarse Hilbert dimension of a subset of a convex set and use it to characterize when a naive convex co-compact subgroup is word hyperbolic or relatively hyperbolic with respect to a collection of virtually Abelian subgroups of rank two.



قيم البحث

اقرأ أيضاً

We show that the identity component of the group of diffeomorphisms of a closed oriented surface of positive genus admits many unbounded quasi-morphisms. As a corollary, we also deduce that this group is not uniformly perfect and its fragmentation no rm is unbounded, answering a question of Burago--Ivanov--Polterovich. As a key tool we construct a hyperbolic graph on which these groups act, which is the analog of the curve graph for the mapping class group.
It has been shown that non-stabilizer eigenstates of permutation gates are appropriate for allowing $d$-dimensional universal quantum computing (uqc) based on minimal informationally complete POVMs. The relevant quantum gates may be built from subgro ups of finite index of the modular group $Gamma=PSL(2,mathbb{Z})$ [M. Planat, Entropy 20, 16 (2018)] or more generally from subgroups of fundamental groups of $3$-manifolds [M. Planat, R. Aschheim, M.~M. Amaral and K. Irwin, arXiv 1802.04196(quant-ph)]. In this paper, previous work is encompassed by the use of torsion-free subgroups of Bianchi groups for deriving the quantum gate generators of uqc. A special role is played by a chain of Bianchi congruence $n$-cusped links starting with Thurstons link.
We classify the connected orientable 2-manifolds whose mapping class groups have a dense conjugacy class. We also show that the mapping class group of a connected orientable 2-manifold has a comeager conjugacy class if and only if the mapping class group is trivial.
195 - Marc Lackenby 2009
We prove that every finitely generated Kleinian group that contains a finite, non-cyclic subgroup either is finite or virtually free or contains a surface subgroup. Hence, every arithmetic Kleinian group contains a surface subgroup.
136 - Ren Guo 2010
This paper studies the combinatorial Yamabe flow on hyperbolic surfaces with boundary. It is proved by applying a variational principle that the length of boundary components is uniquely determined by the combinatorial conformal factor. The combinato rial Yamabe flow is a gradient flow of a concave function. The long time behavior of the flow and the geometric meaning is investigated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا