ترغب بنشر مسار تعليمي؟ اضغط هنا

Combinatorial Yamabe flow on hyperbolic surfaces with boundary

135   0   0.0 ( 0 )
 نشر من قبل Ren Guo
 تاريخ النشر 2010
  مجال البحث
والبحث باللغة English
 تأليف Ren Guo




اسأل ChatGPT حول البحث

This paper studies the combinatorial Yamabe flow on hyperbolic surfaces with boundary. It is proved by applying a variational principle that the length of boundary components is uniquely determined by the combinatorial conformal factor. The combinatorial Yamabe flow is a gradient flow of a concave function. The long time behavior of the flow and the geometric meaning is investigated.



قيم البحث

اقرأ أيضاً

117 - Tianqi Wu , Xu Xu 2021
Using the fractional discrete Laplace operator for triangle meshes, we introduce a fractional combinatorial Calabi flow for discrete conformal structures on surfaces, which unifies and generalizes Chow-Luos combinatorial Ricci flow for Thurstons circ le packings, Luos combinatorial Yamabe flow for vertex scaling and the combinatorial Calabi flow for discrete conformal structures on surfaces. For Thurstons Euclidean and hyperbolic circle packings on triangulated surfaces, we prove the longtime existence and global convergence of the fractional combinatorial Calabi flow. For vertex scalings on polyhedral surfaces, we do surgery on the fractional combinatorial Calabi flow by edge flipping under the Delaunay condition to handle the potential singularities along the flow. Using the discrete conformal theory established by Gu et al., we prove the longtime existence and global convergence of the fractional combinatorial Calabi flow with surgery.
89 - Xu Xu 2020
Combinatorial Ricci flow on an ideally triangulated compact 3-manifold with boundary was introduced by Luo as a 3-dimensional analog of Chow-Luos combinatorial Ricci flow on a triangulated surface and conjectured to find algorithmically the complete hyperbolic metric on the compact 3-manifold with totally geodesic boundary. In this paper, we prove Luos conjecture affirmatively by extending the combinatorial Ricci flow through the singularities of the flow if the ideally triangulated compact 3-manifold with boundary admits such a metric.
117 - Hugo Parlier 2020
The lengths of geodesics on hyperbolic surfaces satisfy intriguing equations, known as identities, relating these lengths to geometric quantities of the surface. This paper is about a large family of identities that relate lengths of closed geodesics and orthogeodesics to boundary lengths or number of cusps. These include, as particular cases, identities due to Basmajian, to McShane and to Mirzakhani and Tan-Wong-Zhang. In stark contrast to previous identities, the identities presented here include the lengths taken among all closed geodesics.
122 - Xu Xu , Chao Zheng 2021
Discrete conformal structure on polyhedral surfaces is a discrete analogue of the smooth conformal structure on surfaces that assigns discrete metrics by scalar functions defined on vertices. In this paper, we introduce combinatorial $alpha$-curvatur e for discrete conformal structures on polyhedral surfaces, which is a parameterized generalization of the classical combinatorial curvature. Then we prove the local and global rigidity of combinatorial $alpha$-curvature with respect to discrete conformal structures on polyhedral surfaces, which confirms parameterized Glickenstein rigidity conjecture. To study the Yamabe problem for combinatorial $alpha$-curvature, we introduce combinatorial $alpha$-Ricci flow for discrete conformal structures on polyhedral surfaces, which is a generalization of Chow-Luos combinatorial Ricci flow for Thurstons circle packings and Luos combinatorial Yamabe flow for vertex scaling on polyhedral surfaces. To handle the potential singularities of the combinatorial $alpha$-Ricci flow, we extend the flow through the singularities by extending the inner angles in triangles by constants. Under the existence of a discrete conformal structure with prescribed combinatorial curvature, the solution of extended combinatorial $alpha$-Ricci flow is proved to exist for all time and converge exponentially fast for any initial value. This confirms a parameterized generalization of another conjecture of Glickenstein on the convergence of combinatorial Ricci flow, gives an almost equivalent characterization of the solvability of Yamabe problem for combinatorial $alpha$-curvature in terms of combinatorial $alpha$-Ricci flow and provides an effective algorithm for finding discrete conformal structures with prescribed combinatorial $alpha$-curvatures.
204 - Peter Buser , Hugo Parlier 2018
The goal of the article is to provide different explicit quantifications of the non density of simple closed geodesics on hyperbolic surfaces. In particular, we show that within any embedded metric disk on a surface, lies a disk of radius only depend ing on the topology of the surface (and the size of the first embedded disk), which is disjoint from any simple closed geodesic.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا