ترغب بنشر مسار تعليمي؟ اضغط هنا

Surface subgroups of Kleinian groups with torsion

195   0   0.0 ( 0 )
 نشر من قبل Marc Lackenby
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English
 تأليف Marc Lackenby




اسأل ChatGPT حول البحث

We prove that every finitely generated Kleinian group that contains a finite, non-cyclic subgroup either is finite or virtually free or contains a surface subgroup. Hence, every arithmetic Kleinian group contains a surface subgroup.



قيم البحث

اقرأ أيضاً

318 - Andrew Putman 2021
A beautifully simple free generating set for the commutator subgroup of a free group was constructed by Tomaszewski. We give a new geometric proof of his theorem, and show how to give a similar free generating set for the commutator subgroup of a sur face group. We also give a simple representation-theoretic description of the structure of the abelianizations of these commutator subgroups and calculate their homology.
We show that the identity component of the group of diffeomorphisms of a closed oriented surface of positive genus admits many unbounded quasi-morphisms. As a corollary, we also deduce that this group is not uniformly perfect and its fragmentation no rm is unbounded, answering a question of Burago--Ivanov--Polterovich. As a key tool we construct a hyperbolic graph on which these groups act, which is the analog of the curve graph for the mapping class group.
86 - Vincent Beck 2017
This article extends the works of Gonc{c}alves, Guaschi, Ocampo [GGO] and Marin [MAR2] on finite subgroups of the quotients of generalized braid groups by the derived subgroup of their pure braid group. We get explicit criteria for subgroups of the ( complex) reflection group to lift to subgroups of this quotient. In the specific case of the classical braid group, this enables us to describe all its finite subgroups : we show that every odd-order finite group can be embedded in it, when the number of strands goes to infinity. We also determine a complete list of the irreducible reflection groups for which this quotient is a Bieberbach group.
It is shown that a closed solvable subgroup of a connected Lie group is compactly generated. In particular, every discrete solvable subgroup of a connected Lie group is finitely generated. Generalizations to locally compact groups are discussed as far as they carry.
We study the subgroup structure of the etale fundamental group $Pi$ of a projective curve over an algebraically closed field of characteristic 0. We obtain an analog of the diamond theorem for $Pi$. As a consequence we show that most normal subgroups of infinite index are semi-free. In particular every proper open subgroup of a normal subgroup of infinite index is semi-free.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا