ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Accuracy of Deterministic Models for Viral Spread on Networks

76   0   0.0 ( 0 )
 نشر من قبل Anirudh Sridhar
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the emergent behavior of viral spread when agents in a large population interact with each other over a contact network. When the number of agents is large and the contact network is a complete graph, it is well known that the population behavior -- that is, the fraction of susceptible, infected and recovered agents -- converges to the solution of an ordinary differential equation (ODE) known as the classical SIR model as the population size approaches infinity. In contrast, we study interactions over contact networks with generic topologies and derive conditions under which the population behavior concentrates around either the classic SIR model or other deterministic models. Specifically, we show that when most vertex degrees in the contact network are sufficiently large, the population behavior concentrates around an ODE known as the network SIR model. We then study the short and intermediate-term evolution of the network SIR model and show that if the contact network has an expander-type property or the initial set of infections is well-mixed in the population, the network SIR model reduces to the classical SIR model. To complement these results, we illustrate through simulations that the two models can yield drastically different predictions, hence use of the classical SIR model can be misleading in certain cases.



قيم البحث

اقرأ أيضاً

81 - Nadia Loy , Andrea Tosin 2021
In this paper, we propose a Boltzmann-type kinetic model of the spreading of an infectious disease on a network. The latter describes the connections among countries, cities or districts depending on the spatial scale of interest. The disease transmi ssion is represented in terms of the viral load of the individuals and is mediated by social contacts among them, taking into account their displacements across the nodes of the network. We formally derive the hydrodynamic equations for the density and the mean viral load of the individuals on the network and we analyse the large-time trends of these quantities with special emphasis on the cases of blow-up or eradication of the infection. By means of numerical tests, we also investigate the impact of confinement measures, such as quarantine or localised lockdown, on the diffusion of the disease on the network.
Mean-field analysis is an important tool for understanding dynamics on complex networks. However, surprisingly little attention has been paid to the question of whether mean-field predictions are accurate, and this is particularly true for real-world networks with clustering and modular structure. In this paper, we compare mean-field predictions to numerical simulation results for dynamical processes running on 21 real-world networks and demonstrate that the accuracy of the theory depends not only on the mean degree of the networks but also on the mean first-neighbor degree. We show that mean-field theory can give (unexpectedly) accurate results for certain dynamics on disassortative real-world networks even when the mean degree is as low as 4.
Online social networks (OSN) are prime examples of socio-technical systems in which individuals interact via a technical platform. OSN are very volatile because users enter and exit and frequently change their interactions. This makes the robustness of such systems difficult to measure and to control. To quantify robustness, we propose a coreness value obtained from the directed interaction network. We study the emergence of large drop-out cascades of users leaving the OSN by means of an agent-based model. For agents, we define a utility function that depends on their relative reputation and their costs for interactions. The decision of agents to leave the OSN depends on this utility. Our aim is to prevent drop-out cascades by influencing specific agents with low utility. We identify strategies to control agents in the core and the periphery of the OSN such that drop-out cascades are significantly reduced, and the robustness of the OSN is increased.
Following the paradigm set by attraction-repulsion-alignment schemes, a myriad of individual based models have been proposed to calculate the evolution of abstract agents. While the emergent features of many agent systems have been described astonish ingly well with force-based models, this is not the case for pedestrians. Many of the classical schemes have failed to capture the fine detail of crowd dynamics, and it is unlikely that a purely mechanical model will succeed. As a response to the mechanistic literature, we will consider a model for pedestrian dynamics that attempts to reproduce the rational behaviour of individual agents through the means of anticipation. Each pedestrian undergoes a two-step time evolution based on a perception stage and a decision stage. We will discuss the validity of this game theoretical based model in regimes with varying degrees of congestion, ultimately presenting a correction to the mechanistic model in order to achieve realistic high-density dynamics.
164 - Zhongpu Xu , Xinchu Fu 2017
Real epidemic spreading networks often composed of several kinds of networks interconnected with each other, and the interrelated networks have the different topologies and epidemic dynamics. Moreover, most human diseases are derived from animals, an d the zoonotic infections always spread on interconnected networks. In this paper, we consider the epidemic spreading on one-way circular-coupled network consist of three interconnected subnetworks. Here, two one-way three-layer circular interactive networks are established by introducing the heterogeneous mean-field approach method, then we get the basic reproduction numbers and prove the global stability of the disease-free equilibrium and endemic equilibrium of the models. Through mathematical analysis and numerical simulations, it is found that the basic reproduction numbers $R_0$ of the two models are dependent on the infection rates, infection periods, average degrees and degree ratios. In the first model, the network structures of the inner contact patterns have a bigger impact on $R_0$ than that of the cross contact patterns. Under the same contact pattern, the internal infection rates have greater influence on $R_0$ than the cross-infection rates. In the second model, the disease prevails in a heterogeneous network has a greater impact on $R_0$ than the disease from a homogeneous network, and the infections among the three subnetworks all play a important role in the propagation process. Numerical examples verify and expand these theoretical results very well.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا