ﻻ يوجد ملخص باللغة العربية
Real epidemic spreading networks often composed of several kinds of networks interconnected with each other, and the interrelated networks have the different topologies and epidemic dynamics. Moreover, most human diseases are derived from animals, and the zoonotic infections always spread on interconnected networks. In this paper, we consider the epidemic spreading on one-way circular-coupled network consist of three interconnected subnetworks. Here, two one-way three-layer circular interactive networks are established by introducing the heterogeneous mean-field approach method, then we get the basic reproduction numbers and prove the global stability of the disease-free equilibrium and endemic equilibrium of the models. Through mathematical analysis and numerical simulations, it is found that the basic reproduction numbers $R_0$ of the two models are dependent on the infection rates, infection periods, average degrees and degree ratios. In the first model, the network structures of the inner contact patterns have a bigger impact on $R_0$ than that of the cross contact patterns. Under the same contact pattern, the internal infection rates have greater influence on $R_0$ than the cross-infection rates. In the second model, the disease prevails in a heterogeneous network has a greater impact on $R_0$ than the disease from a homogeneous network, and the infections among the three subnetworks all play a important role in the propagation process. Numerical examples verify and expand these theoretical results very well.
One of the popular dynamics on complex networks is the epidemic spreading. An epidemic model describes how infections spread throughout a network. Among the compartmental models used to describe epidemics, the Susceptible-Infected-Susceptible (SIS) m
In the real world, many complex systems interact with other systems. In addition, the intra- or inter-systems for the spread of information about infectious diseases and the transmission of infectious diseases are often not random, but with direction
In this paper, we propose a Boltzmann-type kinetic model of the spreading of an infectious disease on a network. The latter describes the connections among countries, cities or districts depending on the spatial scale of interest. The disease transmi
This paper investigates epidemic control behavioral synchronization for a class of complex networks resulting from spread of epidemic diseases via pinning feedback control strategy. Based on the quenched mean field theory, epidemic control synchroniz
Temporal networks are widely used to represent a vast diversity of systems, including in particular social interactions, and the spreading processes unfolding on top of them. The identification of structures playing important roles in such processes