ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving the robustness of online social networks: A simulation approach of network interventions

122   0   0.0 ( 0 )
 نشر من قبل Giona Casiraghi
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

Online social networks (OSN) are prime examples of socio-technical systems in which individuals interact via a technical platform. OSN are very volatile because users enter and exit and frequently change their interactions. This makes the robustness of such systems difficult to measure and to control. To quantify robustness, we propose a coreness value obtained from the directed interaction network. We study the emergence of large drop-out cascades of users leaving the OSN by means of an agent-based model. For agents, we define a utility function that depends on their relative reputation and their costs for interactions. The decision of agents to leave the OSN depends on this utility. Our aim is to prevent drop-out cascades by influencing specific agents with low utility. We identify strategies to control agents in the core and the periphery of the OSN such that drop-out cascades are significantly reduced, and the robustness of the OSN is increased.



قيم البحث

اقرأ أيضاً

We study the robustness properties of multiplex networks consisting of multiple layers of distinct types of links, focusing on the role of correlations between degrees of a node in different layers. We use generating function formalism to address var ious notions of the network robustness relevant to multiplex networks such as the resilience of ordinary- and mutual connectivity under random or targeted node removals as well as the biconnectivity. We found that correlated coupling can affect the structural robustness of multiplex networks in diverse fashion. For example, for maximally-correlated duplex networks, all pairs of nodes in the giant component are connected via at least two independent paths and network structure is highly resilient to random failure. In contrast, anti-correlated duplex networks are on one hand robust against targeted attack on high-degree nodes, but on the other hand they can be vulnerable to random failure.
Personal data is not discrete in socially-networked digital environments. A user who consents to allow access to their profile can expose the personal data of their network connections to non-consented access. Therefore, the traditional consent model (informed and individual) is not appropriate in social networks where informed consent may not be possible for all users affected by data processing and where information is distributed across users. Here, we outline the adequacy of consent for data transactions. Informed by the shortcomings of individual consent, we introduce both a platform-specific model of distributed consent and a cross-platform model of a consent passport. In both models, individuals and groups can coordinate by giving consent conditional on that of their network connections. We simulate the impact of these distributed consent models on the observability of social networks and find that low adoption would allow macroscopic subsets of networks to preserve their connectivity and privacy.
Social network based information campaigns can be used for promoting beneficial health behaviours and mitigating polarisation (e.g. regarding climate change or vaccines). Network-based intervention strategies typically rely on full knowledge of netwo rk structure. It is largely not possible or desirable to obtain population-level social network data due to availability and privacy issues. It is easier to obtain information about individuals attributes (e.g. age, income), which are jointly informative of an individuals opinions and their social network position. We investigate strategies for influencing the system state in a statistical mechanics based model of opinion formation. Using synthetic and data based examples we illustrate the advantages of implementing coarse-grained influence strategies on Ising models with modular structure in the presence of external fields. Our work provides a scalable methodology for influencing Ising systems on large graphs and the first exploration of the Ising influence problem in the presence of ambient (social) fields. By exploiting the observation that strong ambient fields can simplify control of networked dynamics, our findings open the possibility of efficiently computing and implementing public information campaigns using insights from social network theory without costly or invasive levels of data collection.
How is online social media activity structured in the geographical space? Recent studies have shown that in spite of earlier visions about the death of distance, physical proximity is still a major factor in social tie formation and maintenance in vi rtual social networks. Yet, it is unclear, what are the characteristics of the distance dependence in online social networks. In order to explore this issue the complete network of the former major Hungarian online social network is analyzed. We find that the distance dependence is weaker for the online social network ties than what was found earlier for phone communication networks. For a further analysis we introduced a coarser granularity: We identified the settlements with the nodes of a network and assigned two kinds of weights to the links between them. When the weights are proportional to the number of contacts we observed weakly formed, but spatially based modules resembling to the borders of macro-regions, the highest level of regional administration in the country. If the weights are defined relative to an uncorrelated null model, the next level of administrative regions, counties are reflected.
We investigate a multi-agent model of firms in an R&D network. Each firm is characterized by its knowledge stock $x_{i}(t)$, which follows a non-linear dynamics. It can grow with the input from other firms, i.e., by knowledge transfer, and decays oth erwise. Maintaining interactions is costly. Firms can leave the network if their expected knowledge growth is not realized, which may cause other firms to also leave the network. The paper discusses two bottom-up intervention scenarios to prevent, reduce, or delay cascades of firms leaving. The first one is based on the formalism of network controllability, in which driver nodes are identified and subsequently incentivized, by reducing their costs. The second one combines node interventions and network interventions. It proposes the controlled removal of a single firm and the random replacement of firms leaving. This allows to generate small cascades, which prevents the occurrence of large cascades. We find that both approaches successfully mitigate cascades and thus improve the resilience of the R&D network.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا