ﻻ يوجد ملخص باللغة العربية
Image quality plays a big role in CNN-based image classification performance. Fine-tuning the network with distorted samples may be too costly for large networks. To solve this issue, we propose a transfer learning approach optimized to keep into account that in each layer of a CNN some filters are more susceptible to image distortion than others. Our method identifies the most susceptible filters and applies retraining only to the filters that show the highest activation maps distance between clean and distorted images. Filters are ranked using the Borda count election method and then only the most affected filters are fine-tuned. This significantly reduces the number of parameters to retrain. We evaluate this approach on the CIFAR-10 and CIFAR-100 datasets, testing it on two different models and two different types of distortion. Results show that the proposed transfer learning technique recovers most of the lost performance due to input data distortion, at a considerably faster pace with respect to existing methods, thanks to the reduced number of parameters to fine-tune. When few noisy samples are provided for training, our filter-level fine tuning performs particularly well, also outperforming state of the art layer-level transfer learning approaches.
We propose a new method for creating computationally efficient convolutional neural networks (CNNs) by using low-rank representations of convolutional filters. Rather than approximating filters in previously-trained networks with more efficie
Convolutional Neural Networks (CNN) has been extensively studied for Hyperspectral Image Classification (HSIC) more specifically, 2D and 3D CNN models have proved highly efficient in exploiting the spatial and spectral information of Hyperspectral Im
Few-shot image classification is a challenging problem which aims to achieve the human level of recognition based only on a small number of images. Deep learning algorithms such as meta-learning, transfer learning, and metric learning have been emplo
We demonstrate in this paper that a generative model can be designed to perform classification tasks under challenging settings, including adversarial attacks and input distribution shifts. Specifically, we propose a conditional variational autoencod
The conventional spatial convolution layers in the Convolutional Neural Networks (CNNs) are computationally expensive at the point where the training time could take days unless the number of layers, the number of training images or the size of the t