ترغب بنشر مسار تعليمي؟ اضغط هنا

Did they answer? Subjective acts and intents in conversational discourse

80   0   0.0 ( 0 )
 نشر من قبل Elisa Ferracane
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Discourse signals are often implicit, leaving it up to the interpreter to draw the required inferences. At the same time, discourse is embedded in a social context, meaning that interpreters apply their own assumptions and beliefs when resolving these inferences, leading to multiple, valid interpretations. However, current discourse data and frameworks ignore the social aspect, expecting only a single ground truth. We present the first discourse dataset with multiple and subjective interpretations of English conversation in the form of perceived conversation acts and intents. We carefully analyze our dataset and create computational models to (1) confirm our hypothesis that taking into account the bias of the interpreters leads to better predictions of the interpretations, (2) and show disagreements are nuanced and require a deeper understanding of the different contextual factors. We share our dataset and code at http://github.com/elisaF/subjective_discourse.



قيم البحث

اقرأ أيضاً

135 - Jingxuan Yang , Kerui Xu , Jun Xu 2021
In this paper, we present a neural model for joint dropped pronoun recovery (DPR) and conversational discourse parsing (CDP) in Chinese conversational speech. We show that DPR and CDP are closely related, and a joint model benefits both tasks. We ref er to our model as DiscProReco, and it first encodes the tokens in each utterance in a conversation with a directed Graph Convolutional Network (GCN). The token states for an utterance are then aggregated to produce a single state for each utterance. The utterance states are then fed into a biaffine classifier to construct a conversational discourse graph. A second (multi-relational) GCN is then applied to the utterance states to produce a discourse relation-augmented representation for the utterances, which are then fused together with token states in each utterance as input to a dropped pronoun recovery layer. The joint model is trained and evaluated on a new Structure Parsing-enhanced Dropped Pronoun Recovery (SPDPR) dataset that we annotated with both two types of information. Experimental results on the SPDPR dataset and other benchmarks show that DiscProReco significantly outperforms the state-of-the-art baselines of both tasks.
Growing interests have been attracted in Conversational Recommender Systems (CRS), which explore user preference through conversational interactions in order to make appropriate recommendation. However, there is still a lack of ability in existing CR S to (1) traverse multiple reasoning paths over background knowledge to introduce relevant items and attributes, and (2) arrange selected entities appropriately under current system intents to control response generation. To address these issues, we propose CR-Walker in this paper, a model that performs tree-structured reasoning on a knowledge graph, and generates informative dialog acts to guide language generation. The unique scheme of tree-structured reasoning views the traversed entity at each hop as part of dialog acts to facilitate language generation, which links how entities are selected and expressed. Automatic and human evaluations show that CR-Walker can arrive at more accurate recommendation, and generate more informative and engaging responses.
For centuries extremely-long grazing fireball displays have fascinated observers and inspired people to ponder about their origins. The Desert Fireball Network (DFN) is the largest single fireball network in the world, covering about one third of Aus tralian skies. This expansive size has enabled us to capture a majority of the atmospheric trajectory of a spectacular grazing event that lasted over90 seconds, penetrated as deep as ~58.5km, and traveled over 1,300 km through the atmosphere before exiting back into interplanetary space. Based on our triangulation and dynamic analyses of the event, we have estimated the initial mass to be at least 60 kg, which would correspond to a30 cm object given a chondritic density (3500 kg m-3). However, this initial mass estimate is likely a lower bound, considering the minimal deceleration observed in the luminous phase. The most intriguing quality of this close encounter is that the meteoroid originated from an Apollo-type orbit and was inserted into a Jupiter-family comet (JFC) orbit due to the net energy gained during the close encounter with the Earth. Based on numerical simulations, the meteoroid will likely spend ~200kyrs on a JFC orbit and have numerous encounters with Jupiter, the first of which will occur in January-March 2025. Eventually the meteoroid will likely be ejected from the Solar System or be flung into a trans-Neptunian orbit.
Document interpretation and dialog understanding are the two major challenges for conversational machine reading. In this work, we propose Discern, a discourse-aware entailment reasoning network to strengthen the connection and enhance the understand ing for both document and dialog. Specifically, we split the document into clause-like elementary discourse units (EDU) using a pre-trained discourse segmentation model, and we train our model in a weakly-supervised manner to predict whether each EDU is entailed by the user feedback in a conversation. Based on the learned EDU and entailment representations, we either reply to the user our final decision yes/no/irrelevant of the initial question, or generate a follow-up question to inquiry more information. Our experiments on the ShARC benchmark (blind, held-out test set) show that Discern achieves state-of-the-art results of 78.3% macro-averaged accuracy on decision making and 64.0 BLEU1 on follow-up question generation. Code and models are released at https://github.com/Yifan-Gao/Discern.
The dependency between an adequate question formulation and correct answer selection is a very intriguing but still underexplored area. In this paper, we show that question rewriting (QR) of the conversational context allows to shed more light on thi s phenomenon and also use it to evaluate robustness of different answer selection approaches. We introduce a simple framework that enables an automated analysis of the conversational question answering (QA) performance using question rewrites, and present the results of this analysis on the TREC CAsT and QuAC (CANARD) datasets. Our experiments uncover sensitivity to question formulation of the popular state-of-the-art models for reading comprehension and passage ranking. Our results demonstrate that the reading comprehension model is insensitive to question formulation, while the passage ranking changes dramatically with a little variation in the input question. The benefit of QR is that it allows us to pinpoint and group such cases automatically. We show how to use this methodology to verify whether QA models are really learning the task or just finding shortcuts in the dataset, and better understand the frequent types of error they make.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا