ترغب بنشر مسار تعليمي؟ اضغط هنا

A Wrong Answer or a Wrong Question? An Intricate Relationship between Question Reformulation and Answer Selection in Conversational Question Answering

135   0   0.0 ( 0 )
 نشر من قبل Zhucheng Tu
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The dependency between an adequate question formulation and correct answer selection is a very intriguing but still underexplored area. In this paper, we show that question rewriting (QR) of the conversational context allows to shed more light on this phenomenon and also use it to evaluate robustness of different answer selection approaches. We introduce a simple framework that enables an automated analysis of the conversational question answering (QA) performance using question rewrites, and present the results of this analysis on the TREC CAsT and QuAC (CANARD) datasets. Our experiments uncover sensitivity to question formulation of the popular state-of-the-art models for reading comprehension and passage ranking. Our results demonstrate that the reading comprehension model is insensitive to question formulation, while the passage ranking changes dramatically with a little variation in the input question. The benefit of QR is that it allows us to pinpoint and group such cases automatically. We show how to use this methodology to verify whether QA models are really learning the task or just finding shortcuts in the dataset, and better understand the frequent types of error they make.



قيم البحث

اقرأ أيضاً

In this paper, the answer selection problem in community question answering (CQA) is regarded as an answer sequence labeling task, and a novel approach is proposed based on the recurrent architecture for this problem. Our approach applies convolution neural networks (CNNs) to learning the joint representation of question-answer pair firstly, and then uses the joint representation as input of the long short-term memory (LSTM) to learn the answer sequence of a question for labeling the matching quality of each answer. Experiments conducted on the SemEval 2015 CQA dataset shows the effectiveness of our approach.
In this paper we propose a novel approach towards improving the efficiency of Question Answering (QA) systems by filtering out questions that will not be answered by them. This is based on an interesting new finding: the answer confidence scores of s tate-of-the-art QA systems can be approximated well by models solely using the input question text. This enables preemptive filtering of questions that are not answered by the system due to their answer confidence scores being lower than the system threshold. Specifically, we learn Transformer-based question models by distilling Transformer-based answering models. Our experiments on three popular QA datasets and one industrial QA benchmark demonstrate the ability of our question models to approximate the Precision/Recall curves of the target QA system well. These question models, when used as filters, can effectively trade off lower computation cost of QA systems for lower Recall, e.g., reducing computation by ~60%, while only losing ~3-4% of Recall.
Question answering (QA) systems provide a way of querying the information available in various formats including, but not limited to, unstructured and structured data in natural languages. It constitutes a considerable part of conversational artifici al intelligence (AI) which has led to the introduction of a special research topic on Conversational Question Answering (CQA), wherein a system is required to understand the given context and then engages in multi-turn QA to satisfy the users information needs. Whilst the focus of most of the existing research work is subjected to single-turn QA, the field of multi-turn QA has recently grasped attention and prominence owing to the availability of large-scale, multi-turn QA datasets and the development of pre-trained language models. With a good amount of models and research papers adding to the literature every year recently, there is a dire need of arranging and presenting the related work in a unified manner to streamline future research. This survey, therefore, is an effort to present a comprehensive review of the state-of-the-art research trends of CQA primarily based on reviewed papers from 2016-2021. Our findings show that there has been a trend shift from single-turn to multi-turn QA which empowers the field of Conversational AI from different perspectives. This survey is intended to provide an epitome for the research community with the hope of laying a strong foundation for the field of CQA.
In e-commerce portals, generating answers for product-related questions has become a crucial task. In this paper, we focus on the task of product-aware answer generation, which learns to generate an accurate and complete answer from large-scale unlab eled e-commerce reviews and product attributes. However, safe answer problems pose significant challenges to text generation tasks, and e-commerce question-answering task is no exception. To generate more meaningful answers, in this paper, we propose a novel generative neural model, called the Meaningful Product Answer Generator (MPAG), which alleviates the safe answer problem by taking product reviews, product attributes, and a prototype answer into consideration. Product reviews and product attributes are used to provide meaningful content, while the prototype answer can yield a more diverse answer pattern. To this end, we propose a novel answer generator with a review reasoning module and a prototype answer reader. Our key idea is to obtain the correct question-aware information from a large scale collection of reviews and learn how to write a coherent and meaningful answer from an existing prototype answer. To be more specific, we propose a read-and-write memory consisting of selective writing units to conduct reasoning among these reviews. We then employ a prototype reader consisting of comprehensive matching to extract the answer skeleton from the prototype answer. Finally, we propose an answer editor to generate the final answer by taking the question and the above parts as input. Conducted on a real-world dataset collected from an e-commerce platform, extensive experimental results show that our model achieves state-of-the-art performance in terms of both automatic metrics and human evaluations. Human evaluation also demonstrates that our model can consistently generate specific and proper answers.
While day-to-day questions come with a variety of answer types, the current question-answering (QA) literature has failed to adequately address the answer diversity of questions. To this end, we present GooAQ, a large-scale dataset with a variety of answer types. This dataset contains over 5 million questions and 3 million answers collected from Google. GooAQ questions are collected semi-automatically from the Google search engine using its autocomplete feature. This results in naturalistic questions of practical interest that are nonetheless short and expressed using simple language. GooAQ answers are mined from Googles responses to our collected questions, specifically from the answer boxes in the search results. This yields a rich space of answer types, containing both textual answers (short and long) as well as more structured ones such as collections. We benchmarkT5 models on GooAQ and observe that: (a) in line with recent work, LMs strong performance on GooAQs short-answer questions heavily benefit from annotated data; however, (b) their quality in generating coherent and accurate responses for questions requiring long responses (such as how and why questions) is less reliant on observing annotated data and mainly supported by their pre-training. We release GooAQ to facilitate further research on improving QA with diverse response types.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا