ترغب بنشر مسار تعليمي؟ اضغط هنا

Noisy-Labeled NER with Confidence Estimation

160   0   0.0 ( 0 )
 نشر من قبل Yao Fu
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recent studies in deep learning have shown significant progress in named entity recognition (NER). Most existing works assume clean data annotation, yet a fundamental challenge in real-world scenarios is the large amount of noise from a variety of sources (e.g., pseudo, weak, or distant annotations). This work studies NER under a noisy labeled setting with calibrated confidence estimation. Based on empirical observations of different training dynamics of noisy and clean labels, we propose strategies for estimating confidence scores based on local and global independence assumptions. We partially marginalize out labels of low confidence with a CRF model. We further propose a calibration method for confidence scores based on the structure of entity labels. We integrate our approach into a self-training framework for boosting performance. Experiments in general noisy settings with four languages and distantly labeled settings demonstrate the effectiveness of our method. Our code can be found at https://github.com/liukun95/Noisy-NER-Confidence-Estimation



قيم البحث

اقرأ أيضاً

Quality estimation aims to measure the quality of translated content without access to a reference translation. This is crucial for machine translation systems in real-world scenarios where high-quality translation is needed. While many approaches ex ist for quality estimation, they are based on supervised machine learning requiring costly human labelled data. As an alternative, we propose a technique that does not rely on examples from human-annotators and instead uses synthetic training data. We train off-the-shelf architectures for supervised quality estimation on our synthetic data and show that the resulting models achieve comparable performance to models trained on human-annotated data, both for sentence and word-level prediction.
57 - Dou Hu , Lingwei Wei 2020
Although character-based models using lexicon have achieved promising results for Chinese named entity recognition (NER) task, some lexical words would introduce erroneous information due to wrongly matched words. Existing researches proposed many st rategies to integrate lexicon knowledge. However, they performed with simple first-order lexicon knowledge, which provided insufficient word information and still faced the challenge of matched word boundary conflicts; or explored the lexicon knowledge with graph where higher-order information introducing negative words may disturb the identification. To alleviate the above limitations, we present new insight into second-order lexicon knowledge (SLK) of each character in the sentence to provide more lexical word information including semantic and word boundary features. Based on these, we propose a SLK-based model with a novel strategy to integrate the above lexicon knowledge. The proposed model can exploit more discernible lexical words information with the help of global context. Experimental results on three public datasets demonstrate the validity of SLK. The proposed model achieves more excellent performance than the state-of-the-art comparison methods.
Weak supervision has shown promising results in many natural language processing tasks, such as Named Entity Recognition (NER). Existing work mainly focuses on learning deep NER models only with weak supervision, i.e., without any human annotation, a nd shows that by merely using weakly labeled data, one can achieve good performance, though still underperforms fully supervised NER with manually/strongly labeled data. In this paper, we consider a more practical scenario, where we have both a small amount of strongly labeled data and a large amount of weakly labeled data. Unfortunately, we observe that weakly labeled data does not necessarily improve, or even deteriorate the model performance (due to the extensive noise in the weak labels) when we train deep NER models over a simple or weighted combination of the strongly labeled and weakly labeled data. To address this issue, we propose a new multi-stage computational framework -- NEEDLE with three essential ingredients: (1) weak label completion, (2) noise-aware loss function, and (3) final fine-tuning over the strongly labeled data. Through experiments on E-commerce query NER and Biomedical NER, we demonstrate that NEEDLE can effectively suppress the noise of the weak labels and outperforms existing methods. In particular, we achieve new SOTA F1-scores on 3 Biomedical NER datasets: BC5CDR-chem 93.74, BC5CDR-disease 90.69, NCBI-disease 92.28.
The paper investigates the feasibility of confidence estimation for neural machine translation models operating at the high end of the performance spectrum. As a side product of the data annotation process necessary for building such models we propos e sentence level accuracy $SACC$ as a simple, self-explanatory evaluation metric for quality of translation. Experiments on two different annotator pools, one comprised of non-expert (crowd-sourced) and one of expert (professional) translators show that $SACC$ can vary greatly depending on the translation proficiency of the annotators, despite the fact that both pools are about equally reliable according to Krippendorffs alpha metric; the relatively low values of inter-annotator agreement confirm the expectation that sentence-level binary labeling $good$ / $needs work$ for translation out of context is very hard. For an English-Spanish translation model operating at $SACC = 0.89$ according to a non-expert annotator pool we can derive a confidence estimate that labels 0.5-0.6 of the $good$ translations in an in-domain test set with 0.95 Precision. Switching to an expert annotator pool decreases $SACC$ dramatically: $0.61$ for English-Spanish, measured on the exact same data as above. This forces us to lower the CE model operating point to 0.9 Precision while labeling correctly about 0.20-0.25 of the $good$ translations in the data. We find surprising the extent to which CE depends on the level of proficiency of the annotator pool used for labeling the data. This leads to an important recommendation we wish to make when tackling CE modeling in practice: it is critical to match the end-user expectation for translation quality in the desired domain with the demands of annotators assigning binary quality labels to CE training data.
101 - Yangdi Lu , Yang Bo , Wenbo He 2021
Recent studies on the memorization effects of deep neural networks on noisy labels show that the networks first fit the correctly-labeled training samples before memorizing the mislabeled samples. Motivated by this early-learning phenomenon, we propo se a novel method to prevent memorization of the mislabeled samples. Unlike the existing approaches which use the model output to identify or ignore the mislabeled samples, we introduce an indicator branch to the original model and enable the model to produce a confidence value for each sample. The confidence values are incorporated in our loss function which is learned to assign large confidence values to correctly-labeled samples and small confidence values to mislabeled samples. We also propose an auxiliary regularization term to further improve the robustness of the model. To improve the performance, we gradually correct the noisy labels with a well-designed target estimation strategy. We provide the theoretical analysis and conduct the experiments on synthetic and real-world datasets, demonstrating that our approach achieves comparable results to the state-of-the-art methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا