ﻻ يوجد ملخص باللغة العربية
We study the asymptotic organization among many optimizing individuals interacting in a suitable moderate way. We justify this limiting game by proving that its solution provides approximate Nash equilibria for large but finite player games. This proof depends upon the derivation of a law of large numbers for the empirical processes in the limit as the number of players tends to infinity. Because it is of independent interest, we prove this result in full detail. We characterize the solutions of the limiting game via a verification argument.
Mean-field games with absorption is a class of games, that have been introduced in Campi and Fischer [7] and that can be viewed as natural limits of symmetric stochastic differential games with a large number of players who, interacting through a mea
Mean field games are concerned with the limit of large-population stochastic differential games where the agents interact through their empirical distribution. In the classical setting, the number of players is large but fixed throughout the game. Ho
We propose and investigate a general class of discrete time and finite state space mean field game (MFG) problems with potential structure. Our model incorporates interactions through a congestion term and a price variable. It also allows hard constr
Forcing finite state mean field games by a relevant form of common noise is a subtle issue, which has been addressed only recently. Among others, one possible way is to subject the simplex valued dynamics of an equilibrium by a so-called Wright-Fishe
Mean field games with a major player were introduced in (Huang, 2010) within a linear-quadratic (LQ) modeling framework. Due to the rich structure of major-minor player models, the past ten years have seen significant research efforts for different s