ترغب بنشر مسار تعليمي؟ اضغط هنا

A Floating Octave Bandwidth Cone-Disc Antenna for Detection of Cosmic Dawn

97   0   0.0 ( 0 )
 نشر من قبل Agaram Raghunathan
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The critical component of radio astronomy radiometers built to detect redshifted 21-cm signals from Cosmic Dawn is the antenna element. We describe the design and performance of an octave bandwidth cone disc antenna built to detect this signal in the band 40 to 90 MHz. The Cosmic Dawn signal is predicted to be a wideband spectral feature orders of magnitude weaker than sky and ground radio brightness. Thus, the engineering challenge is to design an antenna at low frequencies that is able to provide with high fidelity the faint cosmological signal, along with foreground sky, to the receiver. The antenna characteristics must not compromise detection by imprinting any confusing spectral features on the celestial radiation, ground emission or receiver noise. An innovation in the present design is making the antenna electrically smaller than half wavelength and operating it on the surface of a sufficiently large water body. The homogeneous and high permittivity medium beneath the small cone-disc antenna results in an achromatic beam pattern, high radiation efficiency and minimum unwanted confusing spectral features. The antenna design was optimized in WIPL-D and FEKO. A prototype was constructed and deployed on a lake to validate its performance with field measurements. Index Terms: Antenna measurements, radio astronomy, reflector antennas.

قيم البحث

اقرأ أيضاً

We have developed a compact, wide-bandwidth, dual-polarization cloverleaf-shaped antenna to feed the CHIME radio telescope. The antenna has been tuned using CST to have smaller than -10dB s11 for over an octave of bandwidth, covering the full CHIME b and from 400MHz to 800MHz and this performance has been confirmed by measurement. The antennas are made of conventional low loss circuit boards and can be mass produced economically, which is important because CHIME requires 1280 feeds. They are compact enough to be placed 30cm apart in a linear array at any azimuthal rotation.
We describe the scientific motivation, experimental basis, design methodology, and simulated performance of the ExaVolt Antenna (EVA) mission, and planned ultra-high energy (UHE) particle observatory under development for NASAs suborbital super-press ure balloon program in Antarctica. EVA will improve over ANITAs integrated totals - the current state-of-the-art in UHE suborbital payloads - by 1-2 orders of magnitude in a single flight. The design is based on a novel application of toroidal reflector optics which utilizes a super-pressure balloon surface, along with a feed-array mounted on an inner membrane, to create an ultra-large radio antenna system with a synoptic view of the Antarctic ice sheet below it. Radio impulses arise via the Askaryan effect when UHE neutrinos interact within the ice, or via geosynchrotron emission when UHE cosmic rays interact in the atmosphere above the continent. EVAs instantaneous antenna aperture is estimated to be several hundred square meters for detection of these events within a 150-600 MHz band. For standard cosmogenic UHE neutrino models, EVA should detect of order 30 events per flight in the EeV energy regime. For UHE cosmic rays, of order 15,000 geosynchrotron events would be detected in total, several hundred above 10 EeV, and of order 60 above the GZK cutoff energy
The global 21 cm signal from Cosmic Dawn (CD) and the Epoch of Reionization (EoR), at redshifts $z sim 6-30$, probes the nature of first sources of radiation as well as physics of the Inter-Galactic Medium (IGM). Given that the signal is predicted to be extremely weak, of wide fractional bandwidth, and lies in a frequency range that is dominated by Galactic and Extragalactic foregrounds as well as Radio Frequency Interference, detection of the signal is a daunting task. Critical to the experiment is the manner in which the sky signal is represented through the instrument. It is of utmost importance to design a system whose spectral bandpass and additive spurious can be well calibrated and any calibration residual does not mimic the signal. SARAS is an ongoing experiment that aims to detect the global 21 cm signal. Here we present the design philosophy of the SARAS 2 system and discuss its performance and limitations based on laboratory and field measurements. Laboratory tests with the antenna replaced with a variety of terminations, including a network model for the antenna impedance, show that the gain calibration and modeling of internal additives leave no residuals with Fourier amplitudes exceeding 2~mK, or residual Gaussians of 25 MHz width with amplitudes exceeding 2~mK. Thus, even accounting for reflection and radiation efficiency losses in the antenna, the SARAS~2 system is capable of detection of complex 21-cm profiles at the level predicted by currently favoured models for thermal baryon evolution.
ORIGIN is a proposal for the M3 mission call of ESA aimed at the study of metal creation from the epoch of cosmic dawn. Using high-spectral resolution in the soft X-ray band, ORIGIN will be able to identify the physical conditions of all abundant ele ments between C and Ni to red-shifts of z=10, and beyond. The mission will answer questions such as: When were the first metals created? How does the cosmic metal content evolve? Where do most of the metals reside in the Universe? What is the role of metals in structure formation and evolution? To reach out to the early Universe ORIGIN will use Gamma-Ray Bursts (GRBs) to study their local environments in their host galaxies. This requires the capability to slew the satellite in less than a minute to the GRB location. By studying the chemical composition and properties of clusters of galaxies we can extend the range of exploration to lower redshifts (z ~ 0.2). For this task we need a high-resolution spectral imaging instrument with a large field of view. Using the same instrument, we can also study the so far only partially detected baryons in the Warm-Hot Intergalactic Medium (WHIM). The less dense part of the WHIM will be studied using absorption lines at low redshift in the spectra for GRBs.
The exceptional sensitivity of the SKA will allow observations of the Cosmic Dawn and Epoch of Reionization (CD/EoR) in unprecedented detail, both spectrally and spatially. This wealth of information is buried under Galactic and extragalactic foregro unds, which must be removed accurately and precisely in order to reveal the cosmological signal. This problem has been addressed already for the previous generation of radio telescopes, but the application to SKA is different in many aspects. In this chapter we summarise the contributions to the field of foreground removal in the context of high redshift and high sensitivity 21-cm measurements. We use a state-of-the-art simulation of the SKA Phase 1 observations complete with cosmological signal, foregrounds and frequency-dependent instrumental effects to test both parametric and non-parametric foreground removal methods. We compare the recovered cosmological signal using several different statistics and explore one of the most exciting possibilities with the SKA --- imaging of the ionized bubbles. We find that with current methods it is possible to remove the foregrounds with great accuracy and to get impressive power spectra and images of the cosmological signal. The frequency-dependent PSF of the instrument complicates this recovery, so we resort to splitting the observation bandwidth into smaller segments, each of a common resolution. If the foregrounds are allowed a random variation from the smooth power law along the line of sight, methods exploiting the smoothness of foregrounds or a parametrization of their behaviour are challenged much more than non-parametric ones. However, we show that correction techniques can be implemented to restore the performances of parametric approaches, as long as the first-order approximation of a power law stands.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا