ﻻ يوجد ملخص باللغة العربية
The exceptional sensitivity of the SKA will allow observations of the Cosmic Dawn and Epoch of Reionization (CD/EoR) in unprecedented detail, both spectrally and spatially. This wealth of information is buried under Galactic and extragalactic foregrounds, which must be removed accurately and precisely in order to reveal the cosmological signal. This problem has been addressed already for the previous generation of radio telescopes, but the application to SKA is different in many aspects. In this chapter we summarise the contributions to the field of foreground removal in the context of high redshift and high sensitivity 21-cm measurements. We use a state-of-the-art simulation of the SKA Phase 1 observations complete with cosmological signal, foregrounds and frequency-dependent instrumental effects to test both parametric and non-parametric foreground removal methods. We compare the recovered cosmological signal using several different statistics and explore one of the most exciting possibilities with the SKA --- imaging of the ionized bubbles. We find that with current methods it is possible to remove the foregrounds with great accuracy and to get impressive power spectra and images of the cosmological signal. The frequency-dependent PSF of the instrument complicates this recovery, so we resort to splitting the observation bandwidth into smaller segments, each of a common resolution. If the foregrounds are allowed a random variation from the smooth power law along the line of sight, methods exploiting the smoothness of foregrounds or a parametrization of their behaviour are challenged much more than non-parametric ones. However, we show that correction techniques can be implemented to restore the performances of parametric approaches, as long as the first-order approximation of a power law stands.
We provide an overview of 21cm tomography of the Cosmic Dawn and Epoch of Reionization as possible with SKA-Low. We show why tomography is essential for studying CD/EoR and present the scales which can be imaged at different frequencies for the diffe
In this paper we present observations, simulations, and analysis demonstrating the direct connection between the location of foreground emission on the sky and its location in cosmological power spectra from interferometric redshifted 21 cm experimen
Concerted effort is currently ongoing to open up the Epoch of Reionization (EoR) ($zsim$15-6) for studies with IR and radio telescopes. Whereas IR detections have been made of sources (Lyman-$alpha$ emitters, quasars and drop-outs) in this redshift r
The global 21 cm signal from Cosmic Dawn (CD) and the Epoch of Reionization (EoR), at redshifts $z sim 6-30$, probes the nature of first sources of radiation as well as physics of the Inter-Galactic Medium (IGM). Given that the signal is predicted to
21 cm Epoch of Reionization observations promise to transform our understanding of galaxy formation, but these observations are impossible without unprecedented levels of instrument calibration. We present end-to-end simulations of a full EoR power s